scholarly journals Speech and Sound Quality Recognition in Adults Bimodal Cochlear Implant Listeners

2021 ◽  
Vol 17 (2) ◽  
pp. 198-205
Author(s):  
Leehwa Park ◽  
Soo Hee Oh

Purpose: Recent bimodal studies identified a lack of bimodal evaluation and fitting protocols to improve bimodal benefits. The purpose of this study is to measure bimodal benefits in speech and sound quality recognition and identify bimodal fitting issues with adult cochlear implant listeners to establish bimodal fitting guidelines and evaluation protocol.Methods: A total of 20 adult cochlear implant users were participated in this study. The experimental procedures included basic evaluation, hearing aid evaluation, and bimodal benefits evaluation. In order to evaluate bimodal benefits, speech and sound quality recognition tests were performed. Matrix sentences in quiet and noise (5 and 10 dB sound pressure level), consonant-vowel-consonant words, and story comprehension tasks were provided. Participants judged sound qualities for six sound quality dimensions and a tester performed real ear measurements to verify hearing aid gains.Results: Results showed that bimodal listeners had some bimodal benefits in the sentence and monosyllabic word recognition in quiet. The benefits of sound quality judgments were also observed for six sound quality dimensions. Bimodal cochlear implant listeners of this study demonstrated less real-ear insertion gains than target gains across test frequencies.Conclusion: Speech and sound quality recognition tests are useful tools to measure bimodal benefits. Additional care for bimodal listeners is needed to optimize bimodal fitting and improve the quality of bimodal hearing aid fitting services.

1992 ◽  
Vol 35 (1) ◽  
pp. 175-185 ◽  
Author(s):  
Todd W. Fortune ◽  
David A. Preves

Clinical measurements of the loudness discomfort level (LDL) are generally performed while the subject listens to a particular stimulus presented from an audiometer through headphones (AUD-HP). The assumption in clinical practice has been that the sound pressure level (SPL) corresponding to the sensation of loudness discomfort under AUD-HP conditions will be the same as that corresponding to LDL with the hearing aid. This assumption ignores the fact that the distortion produced by a saturating hearing aid could have an influence on the sensation of loudness. To examine these issues, 5 hearing-impaired subjects were each fit with four linear hearing aids, each having a different saturation sound pressure level (SSPL90). Probe-tube microphone measurements of ear canal SPL at LDL were made while the subjects listened to continuous discourse in quiet under aided and AUD-HP conditions. Also using continuous discourse, real-ear coherence measures were made at various output sound pressure levels near LDL. All four hearing aid types produced mean LDLs that were lower than those obtained under AUD-HP conditions. Those hearing aids with higher SSPL90 produced significantly higher LDLs than hearing aids with lower SSPL90. A significant negative correlation was found between real-ear SPL and real-ear coherence. Quality judgments made at LDL indicated that sound quality of hearing aids with higher SSPL90 was preferred to that of hearing aids with lower SSPL90. Possible fitting implications regarding the setting of SSPL90 from AUD-HP LDL measures are discussed.


1995 ◽  
Vol 2 (3) ◽  
pp. 487-500 ◽  
Author(s):  
X.W. Meng ◽  
G. De Borger ◽  
M. Van Overmeire

In this paper, the acoustical features are described of a multi-purpose auditorium of the Free University of Brussels which were investigated both with field measurements and computer simulation. The convergence of the algorithm of the simulation package RAYNOISE was investigated as a function of the influence on the calculated results of the choice of the number of rays and the reflection order. By comparing the numerical and experimental values of the sound pressure level and early decay time, it is demonstrated that sufficiently accurate acoustical models can be developed. Based on these models, acoustical quantities such as the early energy fraction, sound pressure level, early decay time and early lateral energy fraction were calculated and employed to evaluate the acoustical quality of this multi-purpose hall.


2020 ◽  
Vol 25 (1) ◽  
pp. 9-16
Author(s):  
Erkut Yalçın ◽  
Halil Bilal ◽  
Ayhan Yağcı ◽  
Haluk Erol

A Vibro-Acoustic Finite Element Method (FEM) model capable of calculating the transient sound pressure generated by the door slam of a vehicle was developed in this study. A design sensitivity analysis (DSA) was performed for investigating the effects of major design variables on the related sound quality metrics. The methodology was developed using a sedan-car and its FEM model. This paper shows that a Computer Aided Engineering (CAE) model can be used as a rather powerful tool for giving design change decisions for the door components from sound quality point of view during vehicle body development according to psychoacoustic parameters.


1998 ◽  
Vol 41 (5) ◽  
pp. 1073-1087 ◽  
Author(s):  
Aaron J. Parkinson ◽  
Wendy S. Parkinson ◽  
Richard S. Tyler ◽  
Mary W. Lowder ◽  
Bruce J. Gantz

Sixteen experienced cochlear implant patients with a wide range of speechperception abilities received the SPEAK processing strategy in the Nucleus Spectra-22 cochlear implant. Speech perception was assessed in quiet and in noise with SPEAK and with the patients' previous strategies (for most, Multipeak) at the study onset, as well as after using SPEAK for 6 months. Comparisons were made within and across the two test sessions to elucidate possible learning effects. Patients were also asked to rate the strategies on seven speech recognition and sound quality scales. After 6 months' experience with SPEAK, patients showed significantly improved mean performance on a range of speech recognition measures in quiet and noise. When mean subjective ratings were compared over time there were no significant differences noted between strategies. However, many individuals rated the SPEAK strategy better for two or more of the seven subjective measures. Ratings for "appreciation of music" and "quality of my own voice" in particular were generally higher for SPEAK. Improvements were realized by patients with a wide range of speech perception abilities, including those with little or no open-set speech recognition.


1999 ◽  
Vol 28 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Hugh J. McDermott ◽  
Michelle R. Dean ◽  
Harvey Dillon

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 777 ◽  
Author(s):  
Zhengwei Yang ◽  
Huihua Feng ◽  
Bingjie Ma ◽  
Ammar Abdualrahim Alnor Khalifa

Traditional acoustic evaluation of a diesel engine generally uses the A-weighted sound pressure level (AWSPL) and radiated sound power to assess the noise of an engine prototype present in an experiment. However, this cannot accurately and comprehensively reflect the auditory senses of human subjects during the simulation stage. To overcome such shortage, the Moore–Glasberg loudness and sharpness approach is applied to evaluate and improve the sound quality (SQ) of a 16 V-type marine diesel engine, and synthesizing noise audio files. Through finite element (FE) simulations, the modes of the engine’s block and the average vibrational velocity of the entire engine surface were calculated and compared with the test results. By further applying an automatically matched layer (AML) approach, the engine-radiated sound pressure level (SPL) and sound power contributions of all engine parts were obtained. By analyzing the Moore–Glasberg loudness and sharpness characteristics of three critical sound field points, an improvement strategy of the oil sump was then proposed. After improvement, both the loudness and sharpness decreased significantly. To verify the objective SQ evaluation results, ten noise audio clips of the diesel engine were then synthesized and tested. The subjective evaluation results were in accordance with the simulated analysis. Therefore, the proposed approach to analyze and improve the SQ of a diesel engine is reliable and effective.


2019 ◽  
Vol 9 (23) ◽  
pp. 5047
Author(s):  
Yuan-Wu Jiang ◽  
Dan-Ping Xu ◽  
Zhi-Xiong Jiang ◽  
Jun-Hyung Kim ◽  
Sang-Moon Hwang

With the rapid progress in the development of multimedia devices, earphones have become increasingly important as audio output tools. Hybrid earphones combining balanced-armature (BA) and dynamic receivers can produce better performance over a wider range when compared to the earphones with BA receiver alone (BA earphones) or dynamic receiver alone (dynamic earphones). BA and dynamic earphones are multi-physics products that exhibit coupling between the electromagnetic, mechanical, and acoustic domains. In this study, an analysis tool is developed to design a hybrid earphone based on the conventional BA and dynamic earphones. Using the developed analysis tool, an acoustic tube is optimized to match the earphone target curve and obtain improved sound quality. A prototype is manufactured and tested, and the experimental results verify the feasibility and effectiveness of the developed analysis tool. The root-mean-square value of the sound pressure level (SPL) deviation of the hybrid earphone with the optimized acoustic tube is 4.60, whereas those for the dynamic and BA earphones are 8.94 and 6.04, respectively. Thus, it is verified that the frequency response is improved using the hybrid earphone developed herein.


2013 ◽  
Vol 470 ◽  
pp. 984-987
Author(s):  
Yang Sheng Cai ◽  
Cheng Yun Zhang

Loudness is one of the three basic parameters to assess the auditorium sound quality with reverberation time and balance together, it will be discussed in this paper. There are three expressions evaluating the loudness: listening level, the strength index and the mean forte sound pressure level of tutti-sound (LpF). Each of them has their merits and shortcomings. This paper will focus on these three expressions and the feasibility of checking and accepting acoustics of the hall by loudness.


Sign in / Sign up

Export Citation Format

Share Document