scholarly journals EXPERIMENTAL STUDY OF CREEP AND SHRINKAGE STRAINS IN FINE- AGGREGATE CONCRETES

2017 ◽  
Vol 21 (4) ◽  
pp. 13-20
Author(s):  
S. G. Parfenov ◽  
V. Ye. Moschenkov

The paper studies creep and shrinkage processes running in fine-aggregate concretes with plasto-elastic properties (deformations) under short-time loading are different from those of standard heavy concretes. Experimental studies of creep and shrinkage strains in fine-aggregate concretes that are based on sands with different fineness moduluses permit to compare prestress losses resulting from the creep and shrinkage of concrete. Usually these factors produce an aggregate effect, which makes the study of the processes that run in concrete under long-time influence noticeably complicated. There paper contains analysis results obtained by experimental studies of concrete prisms at different initial strains in the range of , with loading age of t= 14 or 28 days and different properties of concrete mixes. Concrete mix properties were modified by using sands with different fineness modulus. Likewise in order to determine creep and shrinkage deformations due to long-time loads the samples were tested under stress during 14, 73 and 180 days. All experimental data have been systematized in tables and are represented by diagrams. The analysis has helped to investigate the effects of relative stains on the creep deformation in concrete and to define the boundary line between linear and non-linear creep with relation to the stresses in concrete. Analytical description of non-linear deformations was performed with the help of N.H.Arutyunyan’ and I.I.Ulitsky methods. The resultant calculations formed a basis for the recommendations to simplify problem solving methods considering non-linear creep of concrete.

2021 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
Akira Kojima

Charles Kittel has written a masterpiece book, “Introduction to Solid State Physics” (ISSP). He mentions in the chapter on ferroelectrics in detail that barium titanate is the typical displacive-type ferroelectric compound where the Ti4+ displacement develops a dipole moment, which has made a deep impression in our mind. The author’s group, however, has arrived at an alternative viewpoint on the unit cell structure of barium titanate based on their exhaustive experimental studies. Accordingly, the author sent his relevant papers in 2006 and 2007 to Kittel. He endorsed the results frankly with reminiscence. He mentioned revising the ferroelectric chapter of ISSP according the author’s suggestions. It appears to be admissible to publish details now after Kittel has passed away. A long time misunderstanding of the phase transition in barium titanate is due to the text book knowledge of ISSP.


2021 ◽  
Vol 28 (3) ◽  
pp. 954-967
Author(s):  
Jie-lin Li ◽  
Long-yin Zhu ◽  
Ke-ping Zhou ◽  
Hui Chen ◽  
Le Gao ◽  
...  

Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 63 ◽  
Author(s):  
Thomas Meunier ◽  
Claire Ménesguen ◽  
Xavier Carton ◽  
Sylvie Le Gentil ◽  
Richard Schopp

The stability properties of a vortex lens are studied in the quasi geostrophic (QG) framework using the generalized stability theory. Optimal perturbations are obtained using a tangent linear QG model and its adjoint. Their fine-scale spatial structures are studied in details. Growth rates of optimal perturbations are shown to be extremely sensitive to the time interval of optimization: The most unstable perturbations are found for time intervals of about 3 days, while the growth rates continuously decrease towards the most unstable normal mode, which is reached after about 170 days. The horizontal structure of the optimal perturbations consists of an intense counter-shear spiralling. It is also extremely sensitive to time interval: for short time intervals, the optimal perturbations are made of a broad spectrum of high azimuthal wave numbers. As the time interval increases, only low azimuthal wave numbers are found. The vertical structures of optimal perturbations exhibit strong layering associated with high vertical wave numbers whatever the time interval. However, the latter parameter plays an important role in the width of the vertical spectrum of the perturbation: short time interval perturbations have a narrow vertical spectrum while long time interval perturbations show a broad range of vertical scales. Optimal perturbations were set as initial perturbations of the vortex lens in a fully non linear QG model. It appears that for short time intervals, the perturbations decay after an initial transient growth, while for longer time intervals, the optimal perturbation keeps on growing, quickly leading to a non-linear regime or exciting lower azimuthal modes, consistent with normal mode instability. Very long time intervals simply behave like the most unstable normal mode. The possible impact of optimal perturbations on layering is also discussed.


2011 ◽  
Vol 20 (6) ◽  
pp. 584-594 ◽  
Author(s):  
Marko Hyttinen ◽  
Anna Rautio ◽  
Pertti Pasanen ◽  
Tiina Reponen ◽  
G. Scott Earnest ◽  
...  

Ventilation guidelines for airborne infection isolation rooms (AIIRs) are highly variable in different countries indicating lack of actual knowledge about the guidance needed. However, US guidelines for AIIRs are extensive and have been widely adopted outside the US. AIIR performance has also been evaluated in numerous studies. For a long time, the aim has mainly been to evaluate how well the existing AIIRs meet US guidelines. For historical reasons, mixing-type ventilation has been emphasised and attention has been paid to air exchange rates, although the use of auxiliary devices, such as portable room-air cleaners and ultraviolet germicidal irradiation systems, has also been examined. Recently, the scope of the investigations has been widened. The most crucial issue is to minimise the potential for disease transmission and prevent the escape of contaminated air from the AIIR. Airflow direction inside the AIIR is also important and AIIRs minimise air leakage to save energy. On the other hand, it has been observed that efficient containment can be achieved even by using simple and inexpensive construction by considering pressure differential and air flow patterns. Nevertheless, additional research is needed to assist hospitals with improving their preparedness to cope with the threat of pandemics by building and using effective AIIRs.


2019 ◽  
Vol 23 (3-4) ◽  
pp. 37-40
Author(s):  
A.D. Shkodina ◽  
R.M. Hrinko ◽  
I.I. Starchenko

The interaction between a body and an environment provides the main aspects of human life. The study of the functional structure of the olfactory analyzer plays an important role both in clinical and in experimental studies, but the question of its features in humans needs detailed research. The paper presents the modern data of the structural and functional organization of the olfactory analyzer. Particular attention is paid to the structural organization of olfactory bulbs as most complicated and least studied component of the olfactory analyzer. The morphological and functional changes of the olfactory analyzer are developing in some diseases and in action of adverse environmental factors are described while the accentuation is placed on the differences of the mechanism in the pathogenesis of damage to the olfactory analyzer, depending on the nature of the influence of pathogenic factors. In this way as the result of short-term intense effects of the pollutant, irreversible atrophic changes are primarily affected to the olfactory epithelium, thus, to some extent, preventing the spread of the toxin to other analyzer structures. Conversely, a long-term exposure to low doses usually retains the functional activity of the olfactory epithelium, while harmful substances penetrate the central unit of the olfactory analyzer. In such cases, the olfactory dysfunction can be diagnosed after a long time after the start of the cohort with certain pollutants. Currently, studies of the influence of exogenous toxins on various parts of the olfactory analyzer on animal experimental models are quite active. At the same time, the issue of functional and morphological changes in various structural components of the human olfactory analyzer under the influence of negative environmental factors remains poorly understood and requires further morphological and biochemical studies, in order to be able to further develop effective therapeutic and prophylactic means.


Sign in / Sign up

Export Citation Format

Share Document