Cholesterol Depletion Modulates Drug Resistance Pathways to Sensitize Resistant Breast Cancer Cells to Tamoxifen

2021 ◽  
Vol 42 (1) ◽  
pp. 565-579
Author(s):  
GABRIELLA BIANCA HENRIQUES PALMA ◽  
MANDEEP KAUR
2011 ◽  
Vol 10 (1) ◽  
pp. 135 ◽  
Author(s):  
Yusuke Yamamoto ◽  
Yusuke Yoshioka ◽  
Kaho Minoura ◽  
Ryou-u Takahashi ◽  
Fumitaka Takeshita ◽  
...  

Metallomics ◽  
2017 ◽  
Vol 9 (5) ◽  
pp. 535-545 ◽  
Author(s):  
Jianfu Zhao ◽  
Delong Zeng ◽  
Yuedan Liu ◽  
Yi Luo ◽  
Shengbin Ji ◽  
...  

2017 ◽  
Vol 39 (1) ◽  
pp. 25-29 ◽  
Author(s):  
V F Chekhun ◽  
N Yu Lukianova ◽  
T Borikun ◽  
T Zadvornyi ◽  
A Mokhir

Aim: To explore effects of Artemisinin on a series of breast cancer cells with different sensitivity to typical cytotoxic drugs (doxorubicin — Dox; cisplatin — DDP) and to investigate possible artemisinin-induced modification of the mechanisms of drug resistance. Materials and Methods: The study was performed on wild-type breast cancer MCF-7 cell line (MCF-7/S) and its two sublines MCF-7/Dox and MCF-7/DDP resistant to Dox and DDP, respectively. The cells were treated with artemisinin and iron-containing magnetic fluid. The latter was added to modulate iron levels in the cells and explore its role in artemisinin-induced effects. The MTT assay was used to monitor cell viability, whereas changes of expression of selected proteins participating in regulation of cellular iron homeostasis were estimated using immunocytochemical methods. Finally, relative expression levels of miRNA-200b, -320a, and -34a were examined by using qRT-PCR. Results: Artemisinin affects mechanisms of the resistance of breast cancer cells towards both Dox and DDP at sub-toxic doses. The former drug induces changes of expression of iron-regulating proteins via different mechanisms, including epigenetic regulation. Particularly, the disturbances in ferritin heavy chain 1, lactoferrin, hepcidin (decrease) and ferroportin (increase) expression (р ≤ 0.05) were established. The most enhanced increase of miRNA expression under artemisinin influence were found for miRNA-200b in MCF-7/DDP cells (7.1 ± 0.98 fold change), miRNA-320a in MCF-7/Dox cells (2.9 ± 0.45 fold change) and miRNA-34a (1.7 ± 0.15 fold change) in MCF-7/S cells. It was observed that the sensitivity to artemisinin can be influenced by changing iron levels in cells. Conclusions: Artemisinin can modify iron metabolism of breast cancer cells by its cytotoxic effect, but also by inducing changes in expression of iron-regulating proteins and microRNAs (miRNAs), involved in their regulation. This modification affects the mechanisms that are implicated in drug-resistance, that makes artemisinin a perspective modulator of cell sensitivity towards chemotherapeutic agents in cancer treatment.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Yike Wang ◽  
Lifeng Dong ◽  
Fang Wan ◽  
Fangfang Chen ◽  
Dianlei Liu ◽  
...  

AbstractThis study explored the role of MTDH in regulating the sensitivity of breast cancer cell lines to gemcitabine (Gem) and the potential miRNAs targeting MTDH. The expression of MTDH in cancer tissues and cells was detected by immunohistochemical staining or qRT-PCR. The target genes for MTDH were predicted by bioinformatics and further confirmed by dual-luciferase reporter assay and qRT-PCR. Cancer cells were transfected with siMTDH, MTDH, miR-9-3p inhibitor, or mimics and treated by Gem, then CCK-8, colony formation assay, tube formation assay, flow cytometry, wound healing assay, and Transwell were performed to explore the effects of MTDH, miR-9-3p, and Gem on cancer cell growth, apoptosis, migration, and invasion. Expressions of VEGF, p53, cleaved caspase-3, MMP-2, MMP-9, E-Cadherin, N-Cadherin, and Vimentin were determined by Western blot. MTDH was high-expressed in cancer tissues and cells, and the cells with high-expressed MTDH were less sensitive to Gem, while silencing MTDH expression significantly promoted the effect of Gem on inducing apoptosis, inhibiting cell migration, invasion, and growth, and on regulating protein expressions of cancer cells. Moreover, miR-9-3p had a targeted binding relationship with MTDH, and overexpressed miR-9-3p greatly promoted the toxic effects of Gem on cancer cells and expressions of apoptosis-related proteins, whereas overexpressed MTDH partially reversed such effects of overexpressed miR-9-3p. The study proved that miR-9-3p regulates biological functions, drug resistance, and the growth of Gem-treated breast cancer cells through targeting MTDH.


2018 ◽  
Vol 46 (4) ◽  
pp. 1737-1747 ◽  
Author(s):  
Yue Zhang ◽  
Qingyuan Zhang ◽  
Zhongru Cao ◽  
Yuanxi Huang ◽  
Shaoqiang Cheng ◽  
...  

Background/Aims: Homeobox D3 (HOXD3) is a member of the homeobox family of genes that is known primarily for its transcriptional regulation of morphogenesis in all multicellular organisms. In this study, we sought to explore the role that HOXD3 plays in the stem-like capacity, or stemness, and drug resistance of breast cancer cells. Methods: Expression of HOXD3 in clinical breast samples were examined by RT-PCR and immunohistochemistry. HOXD3 expression in breast cancer cell lines were analyzed by RT-PCR and western blot. Ability of drug resistance in breast cancer cells were elevated by MTT cell viability and colony formation assays. We examined stemness using cell fluorescent staining, RT-PCR and western blot for stem cell marker expression. Finally, activity of wnt signaling was analyzed by FOPflash luciferase assays. RT-PCR and western blot were performed for downstream genes of wnt signaling. Results: We demonstrated that HOXD3 is overexpressed in breast cancer tissue as compared to normal breast tissue. HOXD3 overexpression enhances breast cancer cell drug resistance. Furthermore, HOXD3 upregulation in the same cell lines increased sphere formation as well as the expression levels of stem cell biomarkers, suggesting that HOXD3 does indeed increase breast cancer cell stemness. Because we had previously shown that HOXD3 expression is closely associated with integrin β3 expression in breast cancer patients, we hypothesized that HOXD3 may regulate breast cancer cell stemness and drug resistance through integrin β 3. Cell viability assays showed that integrin β 3 knockdown increased cell viability and that HOXD3 could not restore cancer cell stemness or drug resistance. Given integrin β 3’s relationship with Wnt/β-catenin signaling, we determine whether HOXD3 regulates integrin β 3 activity through Wnt/β-catenin signaling. We found that, even though HOXD3 increased the expression of Wnt/β-catenin downstream genes, it did not restore Wnt/β-catenin signaling activity, which was inhibited in integrin β3 knockdown breast cancer cells. Conclusion: We demonstrate that HOXD3 plays a critical role in breast cancer stemness and drug resistance via integrin β3-mediated Wnt/β-catenin signaling. Our findings open the possibility for improving the current standard of care for breast cancer patients by designing targeted molecular therapies that overcome the barriers of cancer cell stemness and drug resistance.


2018 ◽  
Vol 172 (3) ◽  
pp. 713-723 ◽  
Author(s):  
Patricia Midori Murobushi Ozawa ◽  
Faris Alkhilaiwi ◽  
Iglenir João Cavalli ◽  
Danielle Malheiros ◽  
Enilze Maria de Souza Fonseca Ribeiro ◽  
...  

2021 ◽  
Author(s):  
xingang wang ◽  
YAN ZHENG ◽  
YU WANG

Abstract Background and AimsPseudopodium-enriched atypical kinase 1 (PEAK1) has reported to be upregulated in human malignancies and related with poor prognosis. Enhanced PEAK1 expression facilitates tumor cell survival, invasion, metastasis and chemoresistance. However, the role of PEAK1 in breast cancer is not clear. Here, we investigated the PEAK1 expression in breast cancer and analyzed its relation with clinicopathological status and chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated the role of PEAK1 on breast cancer cells in vitro and in vivo. MethodsImmunohistochemistry (IHC) was performed in 112 surgical resected breast cancer tissues. The associations between clinicopathological status, multi-drug resistance and PEAK1 expression were determined. Effect of PEAK1 overexpression or down-expression on proliferation, colony formation, invasion, migration, metastasis and Doxorubicin sensitivity in the MCF-7 cells in vitro and in vivo was detected. ResultsPEAK1 was overexpressed in breast cancer tissues and NAC -resistant breast cancer tissues. High PEAK1 expression was related with tumor size, high tumor grade, T stage, LN metastasis, recurrence, Ki-67 expression, Her-2 expression and multi-drug resistance. Targeting PEAK1 inhibited cell growth, invasion, metastasis and reversed chemoresistance to Doxorubicin in breast cancer cells in vitro and in vivo. ConclusionHigh PEAK1 expression was associated with invasion, metastasis and chemoresistance of breast cancers. Furthermore, targeting PEAK1 could inhibit cell growth and metastasis, and reverse chemoresistance in breast cancer cells, which provides an effective treatment strategies for breast cancer.


Sign in / Sign up

Export Citation Format

Share Document