scholarly journals Структурные фазовые превращения при твердофазной реакции в тонких двухслойных пленках Al/Pt

2018 ◽  
Vol 60 (7) ◽  
pp. 1397
Author(s):  
Р.Р. Алтунин ◽  
Е.Т. Моисеенко ◽  
С.М. Жарков

AbstractA sequence of phases forming during the solid-phase reaction in Al/Pt bilayer thin films has been investigated by in situ electron diffraction. It is shown that the amorphous PtAl_2 phase forms first during the solid-phase reaction initiated by heating. Upon further heating, PtAl_2, Pt_2Al_3, PtAl, and Pt_3Al crystalline phases sequentially form, which is qualitatively consistent with an effective formation heat model. The content of phases forming during the reaction has been quantitatively analyzed and the structural phase transformations have been examined.

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 330
Author(s):  
Hengli Xiang ◽  
Genkuan Ren ◽  
Yanjun Zhong ◽  
Dehua Xu ◽  
Zhiye Zhang ◽  
...  

Fe3O4@C nanoparticles were prepared by an in situ, solid-phase reaction, without any precursor, using FeSO4, FeS2, and PVP K30 as raw materials. The nanoparticles were utilized to decolorize high concentrations methylene blue (MB). The results indicated that the maximum adsorption capacity of the Fe3O4@C nanoparticles was 18.52 mg/g, and that the adsorption process was exothermic. Additionally, by employing H2O2 as the initiator of a Fenton-like reaction, the removal efficiency of 100 mg/L MB reached ~99% with Fe3O4@C nanoparticles, while that of MB was only ~34% using pure Fe3O4 nanoparticles. The mechanism of H2O2 activated on the Fe3O4@C nanoparticles and the possible degradation pathways of MB are discussed. The Fe3O4@C nanoparticles retained high catalytic activity after five usage cycles. This work describes a facile method for producing Fe3O4@C nanoparticles with excellent catalytic reactivity, and therefore, represents a promising approach for the industrial production of Fe3O4@C nanoparticles for the treatment of high concentrations of dyes in wastewater.


2007 ◽  
Vol 124-126 ◽  
pp. 287-290 ◽  
Author(s):  
Fei Liu ◽  
Yong Jun He ◽  
Jeung Soo Huh

The nano-CeO2 was synthesized by two-step solid-phase reaction. The image of TEM showed that nano-CeO2 with an average size of about 70 nm. The series of polyaniline/nano-CeO2 composites with different PANi: CeO2 ratios were prepared by in-situ polymerization in the presence of hydrochloric acid (HCl) as dopant by adding nano-CeO2 into the polymerization reaction mixture of aniline. The composites obtained were characterized by FT-IR and UV-vis spectroscopy analysis. The FT-IR spectra of nanocomposites indicate different blue-shifts, attributed to C–N stretching mode for benzenoid unit. The UV-vis spectra of nanocomposites display einstein-shifts compared with PANi at 620nm. The conductivity properties of the composites are also changed compare to the pure PANi. These results suggest that the interactions between the polymer matrix and nanoparticles take place in polyaniline/nano- CeO2 composites.


2020 ◽  
Author(s):  
Eszter Badenszki ◽  
J. Stephen Daly ◽  
Martin J. Whitehouse ◽  
Brian G. J. Upton

<p>EN-101, a rare albitite [Pl +Fe-Ti oxide +Ap +Zrn] xenolith from Elie Ness, Scottish Midland Valley, is hosted by a c. 290 Ma old alkali basaltic diatreme [1, 2].  EN-101 is considered to belong to the Scottish “anorthoclasite suite” comprising xenoliths and megacrysts of various compositions which are interpreted as samples from the upper mantle – lower crust where they form (syenitic) vein or dyke-like bodies e.g., [3, 4, 5]. The “anorthoclasite suite” has been found in all Scottish terranes suggesting that the presumed dyke system must be extensive.</p><p>Xenoliths of the “anorthoclasite suite” primarily consist of Na-rich and Ca-poor feldspar megacrysts, with generally high Na/K ratios [3] that are typically accompanied by accessory zircon, apatite, biotite, magnetite and Fe-rich pyroxene whereas garnet and corundum with Nb-rich oxides are only occasionally present [3, 4, 5]. Upton et al. [4, 5] argued that the parental melt of the “anorthoclasite suite” formed though small–fraction melting of metasomatized mantle and subsequent melt–solid phase reaction was also involved.  Upton et al. [5] proposed that crystallization of the anorthoclasite suite samples occurred shortly prior to- or contemporaneously with their entrainment. However so far no in-situ dating has been carried out on these samples.</p><p>Early attempts to date the anorthoclasite suite using zircon and feldspar megacrysts from Elie Ness suggested at least a two-stage formation mechanism, where zircon megacrysts yielded a U-Pb age of c. 318 Ma, while euhedral feldspar xenocrysts are significantly younger and roughly coeval with the host volcanism yielding a K-Ar whole-rock age of c. 294 Ma [6].  In this study we present the first in situ U-Pb dating of zircon, which yielded a concordia age of 328 ± 2 Ma (MSWD=0.19; n=12) for EN-101. Zircons εHf<sub>328</sub> values range from +5.2 to +7.5 consistent with a mildly depleted source refreshed by metasomatism. These results may indicate that the proposed extensive syenitic veining within the Scottish upper mantle not only has a complex source [5], but is possibly the result of repeated episodes of magma intrusion.</p><p>References:</p><ol><li>Gernon, T.M. et al. 2013 Bulletin of Volcanology. 75:1-20.</li> <li>Gernon, T.M. et al. 2016 Lithos. 264:70-85.</li> <li>Aspen, P. et al. 1990 European Journal of Mineralogy 2:503-17.</li> <li>Upton, B.G.J. et al. 1990 Journal of Petrology.40:935-56.</li> <li>Upton, B.G.J. et al. 2009 Mineral Mag. 73:943-56.</li> <li>Macintyre, R.M. et al. 1981 Transactions of the Royal Society of Edinburgh: Earth Sciences. 72:1-7.</li> </ol>


1997 ◽  
Vol 113-114 ◽  
pp. 53-56 ◽  
Author(s):  
Jinliang Wang ◽  
Masaaki Hirai ◽  
Masahiko Kusaka ◽  
Motohiro Iwami

1987 ◽  
Vol 26 (Part 2, No. 9) ◽  
pp. L1451-L1452 ◽  
Author(s):  
Yoshio Sorimachi ◽  
Akihito Kobayashi ◽  
Tsutomu Yamashita ◽  
Masasuke Takata ◽  
Shinnosuke Miyauchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document