scholarly journals Fe3O4@C Nanoparticles Synthesized by In Situ Solid-Phase Method for Removal of Methylene Blue

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 330
Author(s):  
Hengli Xiang ◽  
Genkuan Ren ◽  
Yanjun Zhong ◽  
Dehua Xu ◽  
Zhiye Zhang ◽  
...  

Fe3O4@C nanoparticles were prepared by an in situ, solid-phase reaction, without any precursor, using FeSO4, FeS2, and PVP K30 as raw materials. The nanoparticles were utilized to decolorize high concentrations methylene blue (MB). The results indicated that the maximum adsorption capacity of the Fe3O4@C nanoparticles was 18.52 mg/g, and that the adsorption process was exothermic. Additionally, by employing H2O2 as the initiator of a Fenton-like reaction, the removal efficiency of 100 mg/L MB reached ~99% with Fe3O4@C nanoparticles, while that of MB was only ~34% using pure Fe3O4 nanoparticles. The mechanism of H2O2 activated on the Fe3O4@C nanoparticles and the possible degradation pathways of MB are discussed. The Fe3O4@C nanoparticles retained high catalytic activity after five usage cycles. This work describes a facile method for producing Fe3O4@C nanoparticles with excellent catalytic reactivity, and therefore, represents a promising approach for the industrial production of Fe3O4@C nanoparticles for the treatment of high concentrations of dyes in wastewater.

2016 ◽  
Vol 697 ◽  
pp. 510-514 ◽  
Author(s):  
Feng Rui Zhai ◽  
Ke Shan ◽  
Ruo Meng Xu ◽  
Min Lu ◽  
Zhong Zhou Yi ◽  
...  

In the present paper, the ZrB2/h-BN multiphase ceramics were fabricated by SPS (spark plasma sintering) technology at lower sintering temperature using h-BN, ZrO2, AlN and Si as raw materials and B2O3 as a sintering aid. The phase constitution and microstructure of specimens were analyzed by XRD and SEM. Moreover, the effects of different sintering pressures on the densification, microstructure and mechanical properties of ZrB2/h-BN multiphase ceramics were also systematically investigated. The results show that the ZrB2 was obtained through solid phase reaction at different sintering pressures, and increasing sintering pressure could accelerate the formation of ZrB2 phase. As the sintering pressure increasing, the fracture strength and toughness of the sintered samples had a similar increasing tendency as the relative density. The better comprehensive properties were obtained at given sintering pressure of 50MPa, and the relative density, fracture strength and toughness reached about 93.4%, 321MPa and 3.3MPa·m1/2, respectively. The SEM analysis shows that the h-BN grains were fine and uniform, and the effect of sintering pressure on grain size was inconspicuous. The distribution of grain is random cross array, and the fracture texture was more obvious with the increase of sintering pressure. The fracture mode of sintered samples remained intergranular fracture mechanism as sintering pressure changed, and the grain refinement, grain pullout and crack deflection helped to increase the mechanical properties.


2007 ◽  
Vol 124-126 ◽  
pp. 287-290 ◽  
Author(s):  
Fei Liu ◽  
Yong Jun He ◽  
Jeung Soo Huh

The nano-CeO2 was synthesized by two-step solid-phase reaction. The image of TEM showed that nano-CeO2 with an average size of about 70 nm. The series of polyaniline/nano-CeO2 composites with different PANi: CeO2 ratios were prepared by in-situ polymerization in the presence of hydrochloric acid (HCl) as dopant by adding nano-CeO2 into the polymerization reaction mixture of aniline. The composites obtained were characterized by FT-IR and UV-vis spectroscopy analysis. The FT-IR spectra of nanocomposites indicate different blue-shifts, attributed to C–N stretching mode for benzenoid unit. The UV-vis spectra of nanocomposites display einstein-shifts compared with PANi at 620nm. The conductivity properties of the composites are also changed compare to the pure PANi. These results suggest that the interactions between the polymer matrix and nanoparticles take place in polyaniline/nano- CeO2 composites.


2020 ◽  
Author(s):  
Eszter Badenszki ◽  
J. Stephen Daly ◽  
Martin J. Whitehouse ◽  
Brian G. J. Upton

<p>EN-101, a rare albitite [Pl +Fe-Ti oxide +Ap +Zrn] xenolith from Elie Ness, Scottish Midland Valley, is hosted by a c. 290 Ma old alkali basaltic diatreme [1, 2].  EN-101 is considered to belong to the Scottish “anorthoclasite suite” comprising xenoliths and megacrysts of various compositions which are interpreted as samples from the upper mantle – lower crust where they form (syenitic) vein or dyke-like bodies e.g., [3, 4, 5]. The “anorthoclasite suite” has been found in all Scottish terranes suggesting that the presumed dyke system must be extensive.</p><p>Xenoliths of the “anorthoclasite suite” primarily consist of Na-rich and Ca-poor feldspar megacrysts, with generally high Na/K ratios [3] that are typically accompanied by accessory zircon, apatite, biotite, magnetite and Fe-rich pyroxene whereas garnet and corundum with Nb-rich oxides are only occasionally present [3, 4, 5]. Upton et al. [4, 5] argued that the parental melt of the “anorthoclasite suite” formed though small–fraction melting of metasomatized mantle and subsequent melt–solid phase reaction was also involved.  Upton et al. [5] proposed that crystallization of the anorthoclasite suite samples occurred shortly prior to- or contemporaneously with their entrainment. However so far no in-situ dating has been carried out on these samples.</p><p>Early attempts to date the anorthoclasite suite using zircon and feldspar megacrysts from Elie Ness suggested at least a two-stage formation mechanism, where zircon megacrysts yielded a U-Pb age of c. 318 Ma, while euhedral feldspar xenocrysts are significantly younger and roughly coeval with the host volcanism yielding a K-Ar whole-rock age of c. 294 Ma [6].  In this study we present the first in situ U-Pb dating of zircon, which yielded a concordia age of 328 ± 2 Ma (MSWD=0.19; n=12) for EN-101. Zircons εHf<sub>328</sub> values range from +5.2 to +7.5 consistent with a mildly depleted source refreshed by metasomatism. These results may indicate that the proposed extensive syenitic veining within the Scottish upper mantle not only has a complex source [5], but is possibly the result of repeated episodes of magma intrusion.</p><p>References:</p><ol><li>Gernon, T.M. et al. 2013 Bulletin of Volcanology. 75:1-20.</li> <li>Gernon, T.M. et al. 2016 Lithos. 264:70-85.</li> <li>Aspen, P. et al. 1990 European Journal of Mineralogy 2:503-17.</li> <li>Upton, B.G.J. et al. 1990 Journal of Petrology.40:935-56.</li> <li>Upton, B.G.J. et al. 2009 Mineral Mag. 73:943-56.</li> <li>Macintyre, R.M. et al. 1981 Transactions of the Royal Society of Edinburgh: Earth Sciences. 72:1-7.</li> </ol>


2012 ◽  
Vol 624 ◽  
pp. 200-203
Author(s):  
Yu Tian Wang ◽  
You Dong Cao ◽  
Jin Hu ◽  
Wei Jun Zhang ◽  
Da Ping Wu ◽  
...  

Fabrication of lithium silicate powder containing lithium titanate by solid phase reaction method. LiFabrication of lithium silicate powder doped with lithium titanate by solid-state reaction. Take lithium carbonate, silicon dioxide and titania as raw materials and then these powders were mixed according to the different ratios and grinded in an agate mortar for 15 min. And then the mixture were dried at 80°C. Finally, the samples were sintered in vacuum tube furnace at 750, 800, 850 and 900°C for 2h. Thermogravimetric analysis, differential scanning calorimetry and XRD analysis were carried out systematically in this paper. The reaction process and mechanism at different temperatures and the effect of the different ratios and sintering temperature were discussed. Experimental results showed that lithium titanate component increased with increasing amount of titanium dioxide. While the mixture were sintered at 900°C for 2h, there would have lithium silicate and lithium titanate phase.


2011 ◽  
Vol 233-235 ◽  
pp. 2640-2643 ◽  
Author(s):  
Fu Sheng Song

Using tetraethoxysilane, aluminum nitrate and aluminum fluoride as raw materials, the precursor of mullite was prepared by sol-gel process. When the precursor sintered at 1200°C, mullite ceramic was obtained. Differential thermal analysis, X-ray powder diffraction and scanning electron microscope were used to characterize the dried mullite gel and ceramic blocks. The results suggest mullite is synthesized by solid-phase reaction mechanism. X-ray powder diffraction indicates mullite is the main crystals phase in the ceramic specimen. SEM micrograph shows the mullite grains in the shape of short rod with length of 20 um when sintered at 1200 °C for 2 h and the grains grown up to acicular with length of more than 50 um when the treating time under 1200 °C achieved to 4 h.


2018 ◽  
Vol 60 (7) ◽  
pp. 1397
Author(s):  
Р.Р. Алтунин ◽  
Е.Т. Моисеенко ◽  
С.М. Жарков

AbstractA sequence of phases forming during the solid-phase reaction in Al/Pt bilayer thin films has been investigated by in situ electron diffraction. It is shown that the amorphous PtAl_2 phase forms first during the solid-phase reaction initiated by heating. Upon further heating, PtAl_2, Pt_2Al_3, PtAl, and Pt_3Al crystalline phases sequentially form, which is qualitatively consistent with an effective formation heat model. The content of phases forming during the reaction has been quantitatively analyzed and the structural phase transformations have been examined.


2021 ◽  
Author(s):  
Pan Zhang ◽  
Yirui Shu ◽  
Yanjun Zhong ◽  
Lin Yang ◽  
Xiushan Yang

Abstract Aiming at devloping novel low cost and high performance catalyst for degradation of methylene blue in industrial waste water. Waste ferrous sulfater which is a industrial waste produced in the process of producing titanium dioxide, CoZnFeO4 is synthesized from waste ferrous sulfate by solid phase method. The experimental results show that CoZnFeO4 has better catalytic performance than other control samplesc: the degradation rate of methylene blue reaches 100% within 8 min, which maintains high catalytic activity after 5 cycles. Zeta potential and ICP-MS tests show that the degradation reaction occurs in the catalyst. The degradation pathway of methylene blue is verified by ESI-MS. These findings provide a low cost and simple strategy for rational design and modulation of catalysts for the industrial degradation of organic pollutants. It not only realizes the use of waste to treat waste, but also accords with the current concept of green chemistry.


2013 ◽  
Vol 341-342 ◽  
pp. 69-73
Author(s):  
Long Su ◽  
Wan Mei Sui ◽  
Yu Jie Liu

CaZr4(PO4)6 ceramics were prepared with solid reaction of two-steps method. CaZr4(PO4)6 powders were synthesized by solid-phase reaction with Ca (OH)2, ZrO2 and (NH4)2HPO4 as raw materials. Then the powders precursor were sintered to CaZr4(PO4)6 ceramics with single phase structure at 1400°C for 8 hours. The relative density was measured, the phase structure of the materials synthesized at different temperatures and the average coefficients of thermal expansion were investigated. The results showed that the relative density of CaZr4(PO4)6 ceramics sintered at 1400°C was 93%. The average thermal expansion coefficients was 1.8×10-6/°C from 25°C to 1400°C. The CaZr4(PO4)6 ceramics obtained possesses low thermal expansion property in a broad range of temperatures.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5356
Author(s):  
Weihua Chen ◽  
Jiancheng Tang ◽  
Xinghao Lin ◽  
Yunlong Ai ◽  
Nan Ye

In the present study, high-purity ternary-phase nitride (Ti2AlN) powders were synthesized through microwave sintering using TiH2, Al, and TiN powders as raw materials. X-ray diffraction (XRD), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were adopted to characterize the as-prepared powders. It was found that the Ti2AlN powder prepared by the microwave sintering of the 1TiH2/1.15Al/1TiN mixture at 1250 °C for 30 min manifested great purity (96.68%) with uniform grain size distribution. The formation mechanism of Ti2AlN occurred in four stages. The solid-phase reaction of Ti/Al and Ti/TiN took place below the melting point of aluminum and formed Ti2Al and TiN0.5 phases, which were the main intermediates in Ti2AlN formation. Therefore, the present work puts forward a favorable method for the preparation of high-purity Ti2AlN powders.


Sign in / Sign up

Export Citation Format

Share Document