scholarly journals Влияние поверхностного натяжения на разрушение макрообъема жидкости при его свободном падении

Author(s):  
В.А. Архипов ◽  
С.А. Басалаев ◽  
Н.Н. Золоторёв ◽  
К.Г. Перфильева ◽  
А.С. Усанина

The technique and results of an experimental study of the effect of the surface tension coefficient and the initial volume of a water core on the dynamics of its destruction at free settling in air with a non-zero initial velocity are presented. It is shown that the distance over which the water core completely collapses with the formation of the cloud of droplets decreases by 30% at two-fold decrease in the surface tension coefficient of a liquid. It is shown that the dependence of distance of complete destruction on the initial core volume has a minimum.

Author(s):  
Yujia Tao ◽  
Xiulan Huai ◽  
Zhigang Li

The process of a micro droplet of distilled water impact on an isothermal micro-grooved solid surface is numerical simulated in this paper. To accurately represent the droplet dynamics, special attention is given to the variation of the droplet pressure and velocity, the movement of the free surface between two fluids and the deforming of the droplet after impact. The Volume Of Fluid method is used to track the position and the shape of the liquid region. The PISO algorithm is selected to solve the pressure-velocity coupling. The influences of the droplet initial velocity, the contact angle for water on the surface perpendicular to the groove direction and the surface tension coefficient on the impact process are discussed in detail. The results show that the droplet spreading factor improves notably with the increase of the initial velocity, and reduces with the increase of the contact angle. When the surface tension coefficient increases, the spreading factor reduces greatly. The spreading factor is the largest and the time elapsing is the longest in the case of σ = 0.038 N/m.


1966 ◽  
Vol 25 (4) ◽  
pp. 821-837 ◽  
Author(s):  
E. E. Zukoski

An experimental study has been made of the motion of long bubbles in closed tubes. The influence of viscosity and surface tension on the bubble velocity is clarified. A correlation of bubble velocities in vertical tubes is suggested and is shown to be useful for the whole range of parameters investigated. In addition, the effect of tube inclination angle on bubble velocity is presented, and certain features of the flow are described qualitatively.


2021 ◽  
Vol 6 (3(62)) ◽  
pp. 11-14
Author(s):  
Oleh Zimin

The object of research in this work is the intensification of hydrocarbon production. The most problematic task of the study is the efficiency of intensification of compacted high-temperature carbonate reservoirs. Despite the gradual transition to renewable energy sources, natural gas and oil will play a dominant role in the world's energy balance in the next 20–30 years. Carbonate rocks have significant mining potential, but low filtration properties require intensification to improve reservoir permeability. High temperatures and pressures at great depths require the improvement of existing hydrocarbon production technologies. The most popular method for treating reservoirs containing carbonates is acid treatments in different variations, but for effective treatment it is necessary to achieve deep penetration of the solution into the formation. The study solves the problem of selection of effective carrier liquids for the preparation of acid solutions for the treatment of compacted high-temperature reservoirs with high carbonate content. To ensure quality treatment, acid solutions must have low viscosity and surface tension coefficient, low reaction rate, their chemical properties must ensure the absence of insoluble precipitates in the process of reactions with fluids and rocks, as well as be environmentally friendly. To select the most optimal carrier liquid, experiments were conducted to determine which candidate liquids provide the minimum reaction rate of acidic solutions with carbonates. Based on the analysis of industrial application data and literature sources, water, nephras, methanol, ethyl acetate, and methyl acetate were selected for further research. Widely studied acetic acid was chosen as the basic acid. Studies have shown that methyl acetate has a number of advantages, namely low reaction rate, low viscosity and surface tension coefficient. As well as the possibility of hydrolysis in the formation with the release of acetic acid, which significantly prolongs the reaction time of the solution with the rock and the depth of penetration of the active solution into the formation.


2011 ◽  
Vol 492 ◽  
pp. 277-282
Author(s):  
Qing Lei Wang ◽  
De Cai Li ◽  
Fan Wang

The author measured surface tension coefficient for liquid with a new experimental apparatus, measured magnetic fluid surface tension coefficient at different temperatures and with different volume of surfactant. By the analysis of experimental data, we obtained that magnetic fluid surface tension coefficient decreases with the increasing temperature and increases with the addition of surfactant volume and reaches a certain stability value. We also obtained the expression of magnetic fluid surface tension coefficient and the temperature or surfactant. This paper discussed the relationship between the liquid surface tension coefficient and the temperature and surfactant from the view of thermodynamics.


2015 ◽  
Vol 26 (4) ◽  
pp. 401-425 ◽  
Author(s):  
FUJUN ZHOU ◽  
JUNDE WU

Of concern is the stability and bifurcation analysis of a free boundary problem modelling the growth of multi-layer tumours. A remarkable feature of this problem lies in that the free boundary is imposed with nonlinear boundary conditions, where a Gibbs–Thomson relation is taken into account. By employing a functional approach, analytic semigroup theory and bifurcation theory, we prove that there exists a positive threshold value γ* of surface tension coefficient γ such that if γ > γ* then the unique flat stationary solution is asymptotically stable under non-flat perturbations, while for γ < γ* this unique flat stationary solution is unstable and there exists a series of non-flat stationary solutions bifurcating from it. The result indicates a significant phenomenon that a smaller value of surface tension coefficient γ may make tumours more aggressive.


Sign in / Sign up

Export Citation Format

Share Document