scholarly journals Моделирование спектра оптического поглощения межзвездной среды гибридными молекулами C-=SUB=-24-=/SUB=-H-=SUB=-30-=/SUB=-, C-=SUB=-32-=/SUB=-H-=SUB=-36-=/SUB=- и С-=SUB=-73-=/SUB=-Н-=SUB=-74-=/SUB=-

Author(s):  
М.С. Чекулаев ◽  
С.Г. Ястребов

Accounting for the different contributions of the aromatic rings, separated with sp3 bonds, with ab initio method we constructed the hybrid cluster С73Н74 which UV spectrum matches the most noticeable absorption band of 217.5 nm, known from astrophysical observations.

1994 ◽  
Vol 05 (02) ◽  
pp. 299-301
Author(s):  
Lin Libin ◽  
Zheng Xiangyin

Based on cluster model, we have calculated the fundamental vibrational frequencies of rutile by combining ab initio method and Wilson’s GF-matrix method. In the calculation, we have introduced the concept of environment factor α to correct the force field of the cluster model. The results of calculation are in good agreement to the experimental data and the normal modes give us clear physical picture of the crystal vibration.


Langmuir ◽  
2004 ◽  
Vol 20 (24) ◽  
pp. 10751-10755 ◽  
Author(s):  
Z. H. Zhu ◽  
G. Q. Lu

2021 ◽  
Vol 41 (2) ◽  
pp. 0230001
Author(s):  
杨全顺 Yang Quanshun ◽  
江涛 Jiang Tao ◽  
李辉 Li Hui ◽  
高铁锁 Gao Tiesuo

2019 ◽  
Vol 85 (4) ◽  
pp. 71-80
Author(s):  
Mariana Gumenna ◽  
Nina Klimenko ◽  
Alexandr Stryutsky ◽  
Alexandr Shevchuk ◽  
Viktor Kravchenko ◽  
...  

A method for the synthesis of reactive oligomeric silsesquioxanes, combining fragments of azo dye 4-(phenylazo)phenol and fluorescent dye Rhodamine B in various proportions in an organic shell was developed. These compounds were obtained by the reaction between the oligosilsesquioxane nanoparticles consisting of a mixture of linear, branched, ladder and polyhedral structures with epoxy groups in an organic frame (OSS–Ep) and the dyes. The structure of the synthesized substances was characterized by the methods of IR and 1H NMR spectroscopy. The UV-Vis spectra of OSS–Pp–Rh in DMF solution contain absorption bands characteristic of both acidic (560 and 350 nm) and lactone (in the range of 318–326 nm) forms of Rhodamine B. The absorption band of 4-(phenylazo) phenol fragments corresponding to π−π* transition is observed at 348 nm and overlaps the absorption band of Rhodamine B at 350 nm.The intensity of the absorption bands of fragments of various dyes depends on their content in organic frame of the silsesquioxane core. The intensity of the absorption bands at 348 nm and at 560 nm increases with an increase in the content of 4-(phenylazo)phenol and Rhodamine B correspondingly.It should be noted that when using DMF as a solvent the absorption band corresponding to acidic form of Rhodamine B at 560 nm in the UV-Vis spectra of the compounds obtained is more intense than similar band in the spectrum of the original Rhodamine B. Therefore, the attachment of Rhodamine B to the silsesquioxane core of oligomeric silsesquioxanes mixture does not have a significant effect on the position of absorption maxima in the UV-spectrum and prevents dye’s fragments from converting to the colorless lactone form. In the fluorescence spectra of OSS–Pp–Rh obtained using DMF as a solvent a peak at λ max = 592 nm (λex= 520 nm) is observed. The position of the fluorescence peak and its intensity in the spectra at the same optical density of the medium practically do not depend on the ratio of fragments of 4-(phenylazo)phenol and Rhodamine B in organic frame of OSS–Pp–Rh.  The combination of two different chromophores in organic shell of the silsesquioxane core broadens the range of absorbed light and the change of their ratio allows to adjust the absorption intensity in a certain area. The presence of hydroxyl groups makes it possible to introduce the obtained compounds into the composition of polymeric organic-inorganic nanocomposites by covalent bonding.


2009 ◽  
Vol 08 (supp01) ◽  
pp. 983-1001 ◽  
Author(s):  
YAN-LI DING ◽  
LI-DONG GONG ◽  
DONG-XIA ZHAO ◽  
MING-BO ZHANG ◽  
ZHONG-ZHI YANG

The gas-phase identity bimolecular nucleophilic substitution reactions, Cl- + CH3 Cl → ClCH3 + Cl- and Cl- + SiH3Cl → ClSiH3 + Cl- , are investigated in terms of the ab initio method, potential acting on an electron in a molecule (PAEM) and molecular face (MF) theory. The computations have been performed at the CCSD(T)/aug-cc-pVTZ//MP2/6-311+G(3df,3pd) and CISD/aug-cc-pVDZ level. Based on the ab initio calculation, according to the PAEM theory, the strength of a chemical bond during forming or rupturing may be characterized by the D pb , which is a new physical quantity relating to the barrier height of the PAEM along a chemical bond. According to the MF theory, the interesting pictures of electron transfer and interpolarization effect between the reactants are clearly demonstrated to provide visualized spatial changing features of the MF for the title reactions along the IRC routes. The reason why [ Cl⋯CH3⋯Cl]- is a high-energy transition state is also analyzed in comparison with the stable low-energy intermediate [ Cl⋯SiH3⋯Cl]- .


Sign in / Sign up

Export Citation Format

Share Document