scholarly journals Privacy-Preserving Deep Learning for the Detection of Protected Health Information in Real-World Data: Comparative Evaluation

10.2196/14064 ◽  
2020 ◽  
Vol 4 (5) ◽  
pp. e14064 ◽  
Author(s):  
Sven Festag ◽  
Cord Spreckelsen

Background Collaborative privacy-preserving training methods allow for the integration of locally stored private data sets into machine learning approaches while ensuring confidentiality and nondisclosure. Objective In this work we assess the performance of a state-of-the-art neural network approach for the detection of protected health information in texts trained in a collaborative privacy-preserving way. Methods The training adopts distributed selective stochastic gradient descent (ie, it works by exchanging local learning results achieved on private data sets). Five networks were trained on separated real-world clinical data sets by using the privacy-protecting protocol. In total, the data sets contain 1304 real longitudinal patient records for 296 patients. Results These networks reached a mean F1 value of 0.955. The gold standard centralized training that is based on the union of all sets and does not take data security into consideration reaches a final value of 0.962. Conclusions Using real-world clinical data, our study shows that detection of protected health information can be secured by collaborative privacy-preserving training. In general, the approach shows the feasibility of deep learning on distributed and confidential clinical data while ensuring data protection.

2019 ◽  
Author(s):  
Sven Festag ◽  
Cord Spreckelsen

BACKGROUND Collaborative privacy-preserving training methods allow for the integration of locally stored private data sets into machine learning approaches while ensuring confidentiality and nondisclosure. OBJECTIVE In this work we assess the performance of a state-of-the-art neural network approach for the detection of protected health information in texts trained in a collaborative privacy-preserving way. METHODS The training adopts distributed selective stochastic gradient descent (ie, it works by exchanging local learning results achieved on private data sets). Five networks were trained on separated real-world clinical data sets by using the privacy-protecting protocol. In total, the data sets contain 1304 real longitudinal patient records for 296 patients. RESULTS These networks reached a mean F1 value of 0.955. The gold standard centralized training that is based on the union of all sets and does not take data security into consideration reaches a final value of 0.962. CONCLUSIONS Using real-world clinical data, our study shows that detection of protected health information can be secured by collaborative privacy-preserving training. In general, the approach shows the feasibility of deep learning on distributed and confidential clinical data while ensuring data protection.


2021 ◽  
Vol 4 ◽  
Author(s):  
Zhanhong Jiang ◽  
Aditya Balu ◽  
Chinmay Hegde ◽  
Soumik Sarkar

In distributed machine learning, where agents collaboratively learn from diverse private data sets, there is a fundamental tension between consensus and optimality. In this paper, we build on recent algorithmic progresses in distributed deep learning to explore various consensus-optimality trade-offs over a fixed communication topology. First, we propose the incremental consensus-based distributed stochastic gradient descent (i-CDSGD) algorithm, which involves multiple consensus steps (where each agent communicates information with its neighbors) within each SGD iteration. Second, we propose the generalized consensus-based distributed SGD (g-CDSGD) algorithm that enables us to navigate the full spectrum from complete consensus (all agents agree) to complete disagreement (each agent converges to individual model parameters). We analytically establish convergence of the proposed algorithms for strongly convex and nonconvex objective functions; we also analyze the momentum variants of the algorithms for the strongly convex case. We support our algorithms via numerical experiments, and demonstrate significant improvements over existing methods for collaborative deep learning.


2022 ◽  
pp. 27-50
Author(s):  
Rajalaxmi Prabhu B. ◽  
Seema S.

A lot of user-generated data is available these days from huge platforms, blogs, websites, and other review sites. These data are usually unstructured. Analyzing sentiments from these data automatically is considered an important challenge. Several machine learning algorithms are implemented to check the opinions from large data sets. A lot of research has been undergone in understanding machine learning approaches to analyze sentiments. Machine learning mainly depends on the data required for model building, and hence, suitable feature exactions techniques also need to be carried. In this chapter, several deep learning approaches, its challenges, and future issues will be addressed. Deep learning techniques are considered important in predicting the sentiments of users. This chapter aims to analyze the deep-learning techniques for predicting sentiments and understanding the importance of several approaches for mining opinions and determining sentiment polarity.


Author(s):  
M. Sester ◽  
Y. Feng ◽  
F. Thiemann

<p><strong>Abstract.</strong> Cartographic generalization is a problem, which poses interesting challenges to automation. Whereas plenty of algorithms have been developed for the different sub-problems of generalization (e.g. simplification, displacement, aggregation), there are still cases, which are not generalized adequately or in a satisfactory way. The main problem is the interplay between different operators. In those cases the benchmark is the human operator, who is able to design an aesthetic and correct representation of the physical reality.</p><p>Deep Learning methods have shown tremendous success for interpretation problems for which algorithmic methods have deficits. A prominent example is the classification and interpretation of images, where deep learning approaches outperform the traditional computer vision methods. In both domains &amp;ndash; computer vision and cartography &amp;ndash; humans are able to produce a solution; a prerequisite for this is, that there is the possibility to generate many training examples for the different cases. Thus, the idea in this paper is to employ Deep Learning for cartographic generalizations tasks, especially for the task of building generalization. An advantage of this task is the fact that many training data sets are available from given map series. The approach is a first attempt using an existing network.</p><p>In the paper, the details of the implementation will be reported, together with an in depth analysis of the results. An outlook on future work will be given.</p>


Author(s):  
Xuan Wu ◽  
Qing-Guo Chen ◽  
Yao Hu ◽  
Dengbao Wang ◽  
Xiaodong Chang ◽  
...  

Multi-view multi-label learning serves an important framework to learn from objects with diverse representations and rich semantics. Existing multi-view multi-label learning techniques focus on exploiting shared subspace for fusing multi-view representations, where helpful view-specific information for discriminative modeling is usually ignored. In this paper, a novel multi-view multi-label learning approach named SIMM is proposed which leverages shared subspace exploitation and view-specific information extraction. For shared subspace exploitation, SIMM jointly minimizes confusion adversarial loss and multi-label loss to utilize shared information from all views. For view-specific information extraction, SIMM enforces an orthogonal constraint w.r.t. the shared subspace to utilize view-specific discriminative information. Extensive experiments on real-world data sets clearly show the favorable performance of SIMM against other state-of-the-art multi-view multi-label learning approaches.


Author(s):  
Dharmendra Singh Rajput ◽  
T. Sunil Kumar Reddy ◽  
Dasari Naga Raju

In recent years, big data analytics is the major research area where the researchers are focused. Complex structures are trained at each level to simplify the data abstractions. Deep learning algorithms are one of the promising researches for automation of complex data extraction from large data sets. Deep learning mechanisms produce better results in machine learning, such as computer vision, improved classification modelling, probabilistic models of data samples, and invariant data sets. The challenges handled by the big data are fast information retrieval, semantic indexing, extracting complex patterns, and data tagging. Some investigations are concentrated on integration of deep learning approaches with big data analytics which pose some severe challenges like scalability, high dimensionality, data streaming, and distributed computing. Finally, the chapter concludes by posing some questions to develop the future work in semantic indexing, active learning, semi-supervised learning, domain adaptation modelling, data sampling, and data abstractions.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
David Chen ◽  
Sijia Liu ◽  
Paul Kingsbury ◽  
Sunghwan Sohn ◽  
Curtis B. Storlie ◽  
...  

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1606
Author(s):  
Daniela Onita ◽  
Adriana Birlutiu ◽  
Liviu P. Dinu

Images and text represent types of content that are used together for conveying a message. The process of mapping images to text can provide very useful information and can be included in many applications from the medical domain, applications for blind people, social networking, etc. In this paper, we investigate an approach for mapping images to text using a Kernel Ridge Regression model. We considered two types of features: simple RGB pixel-value features and image features extracted with deep-learning approaches. We investigated several neural network architectures for image feature extraction: VGG16, Inception V3, ResNet50, Xception. The experimental evaluation was performed on three data sets from different domains. The texts associated with images represent objective descriptions for two of the three data sets and subjective descriptions for the other data set. The experimental results show that the more complex deep-learning approaches that were used for feature extraction perform better than simple RGB pixel-value approaches. Moreover, the ResNet50 network architecture performs best in comparison to the other three deep network architectures considered for extracting image features. The model error obtained using the ResNet50 network is less by approx. 0.30 than other neural network architectures. We extracted natural language descriptors of images and we made a comparison between original and generated descriptive words. Furthermore, we investigated if there is a difference in performance between the type of text associated with the images: subjective or objective. The proposed model generated more similar descriptions to the original ones for the data set containing objective descriptions whose vocabulary is simpler, bigger and clearer.


2021 ◽  
Vol 11 (17) ◽  
pp. 8227 ◽  
Author(s):  
Andrea Loddo ◽  
Fabio Pili ◽  
Cecilia Di Ruberto

COVID-19, an infectious coronavirus disease, caused a pandemic with countless deaths. From the outset, clinical institutes have explored computed tomography as an effective and complementary screening tool alongside the reverse transcriptase-polymerase chain reaction. Deep learning techniques have shown promising results in similar medical tasks and, hence, may provide solutions to COVID-19 based on medical images of patients. We aim to contribute to the research in this field by: (i) Comparing different architectures on a public and extended reference dataset to find the most suitable; (ii) Proposing a patient-oriented investigation of the best performing networks; and (iii) Evaluating their robustness in a real-world scenario, represented by cross-dataset experiments. We exploited ten well-known convolutional neural networks on two public datasets. The results show that, on the reference dataset, the most suitable architecture is VGG19, which (i) Achieved 98.87% accuracy in the network comparison; (ii) Obtained 95.91% accuracy on the patient status classification, even though it misclassifies some patients that other networks classify correctly; and (iii) The cross-dataset experiments exhibit the limitations of deep learning approaches in a real-world scenario with 70.15% accuracy, which need further investigation to improve the robustness. Thus, VGG19 architecture showed promising performance in the classification of COVID-19 cases. Nonetheless, this architecture enables extensive improvements based on its modification, or even with preprocessing step in addition to it. Finally, the cross-dataset experiments exposed the critical weakness of classifying images from heterogeneous data sources, compatible with a real-world scenario.


Sign in / Sign up

Export Citation Format

Share Document