scholarly journals Usability of an At-Home Anterior Nares SARS-CoV-2 RT-PCR Sample Collection Kit: Human Factors Feasibility Study (Preprint)

10.2196/29234 ◽  
2021 ◽  
Author(s):  
Laura E Strong ◽  
Irene Middendorf ◽  
Michelle Turner ◽  
Varun Sama ◽  
David K Edwards V ◽  
...  
2021 ◽  
Author(s):  
Laura E Strong ◽  
Irene Middendorf ◽  
Michelle Turner ◽  
David K Edwards V ◽  
Varun Sama ◽  
...  

BACKGROUND Readily available testing for SARS-CoV-2 is necessary to mitigate COVID-19 disease outbreaks. At-home collection kits, in which samples are self-collected without requiring a laboratory or clinic visit and sent to an external laboratory for testing, can provide convenient testing to those with barriers to access. They can prevent unnecessary exposure between patient and clinical staff, increase access for patients with disabilities or remote workers, and decrease burdens on health care resources, such as provider time and personal protective equipment. Exact Sciences developed an at-home collection kit for samples to be tested to detect SARS-CoV-2 that includes an Instructions for Use (IFU) document, which guides people without prior experience on collecting a nasal swab sample. Demonstrating successful sample collection and usability is critical to ensure that these samples meet the same high-quality sample collection standards as samples collected in clinics. OBJECTIVE The aim of this study was to determine the usability of a SARS-CoV-2 at-home nasal swab sample collection kit. METHODS A human factors usability study was conducted with 30 subjects without prior medical, laboratory, or health care training and without COVID-19 sample self-collection experience. Subjects were observed while they followed the IFU for the at-home sample collection portion of the SARS-CoV-2 test in a setting that simulated a home environment. IFU usability was further evaluated by requiring the subjects to complete a survey, answer comprehension questions, provide written feedback, and respond to questions from the observer about problems during use. RESULTS All 30 subjects successfully completed the sample collection process, and all 30 samples were determined by reverse transcription–polymerase chain reaction (RT-PCR) testing to meet quality standards for SARS-CoV-2 testing. The subjects’ written feedback and comments revealed several recommendations to improve the IFU. CONCLUSIONS The study demonstrated the overall usability of an at-home SARS-CoV-2 collection kit. Various feedback mechanisms provided opportunities to improve the wording and graphics for some critical tasks, including placing the label correctly on the tube. A modified IFU was prepared based on study outcomes.


2020 ◽  
Vol 15 (15) ◽  
pp. 1483-1487
Author(s):  
Nikhil S Sahajpal ◽  
Ashis K Mondal ◽  
Allan Njau ◽  
Sudha Ananth ◽  
Kimya Jones ◽  
...  

RT-PCR-based assays for the detection of SARS-CoV-2 have played an essential role in the current COVID-19 pandemic. However, the sample collection and test reagents are in short supply, primarily due to supply chain issues. Thus, to eliminate testing constraints, we have optimized three key process variables: RNA extraction and RT-PCR reactions, different sample types and media to facilitate SARS-CoV-2 testing. By performing various validation and bridging studies, we have shown that various sample types such as nasopharyngeal swab, bronchioalveolar lavage and saliva, collected using conventional nasopharyngeal swabs, ESwab or 3D-printed swabs and, preserved in viral transport media, universal transport media, 0.9% sodium chloride or Amies media are compatible with RT-PCR assay for COVID-19. Besides, the reduction of PCR reagents by up to fourfold also produces reliable results.


2020 ◽  
pp. oemed-2020-106866
Author(s):  
Evguenia Krastinova ◽  
Valérie Garrait ◽  
Marie-Thérèse Lecam ◽  
André Coste ◽  
Emmanuelle Varon ◽  
...  

ObjectivesAlthough healthcare workers (HCWs) have been particularly affected by SARS-CoV-2, detailed data remain scarce. In this study, we investigated infection rates, clinical characteristics, occupational exposure and household transmission among all symptomatic HCWs screened by SARS-CoV-2 RT-PCR between 17 March (French lockdown) and 20 April.MethodsSARS-CoV-2 RT-PCR was proposed to symptomatic (new cough or dyspnoea) HCWs at Creteil Hospital in one of the Parisian suburbs most severely affected by COVID-19. Data on occupational profile, living situation and household, together with self–isolation and mask use at home were collected, as well as the number of cases in the household.ResultsThe incidence rate of symptomatic SARS-CoV-2 was estimated to be 5% (110/2188). A total of 110 (35%) of the 314 HCWs tested positive and 9 (8%) were hospitalised. On multivariate analysis, factors independently associated with positive RT-PCR were occupational profile with direct patient facing (OR 3.1, 95% CI 1.1 to 8.8), p<0.03), and presence of anosmia (OR 5.7, 95% CI 3.1 to 10.6), p<0.0001). Being a current smoker was associated with negative RT-PCR (OR 0.3, 95% CI 0.1 to 0.7), p=0.005). Transmission from HCWs to household members was reported in 9 (14%) cases, and 2 deaths occurred. Overall, self-isolation was possible in 52% of cases, but only 31% of HCWs were able to wear a mask at home.ConclusionThis is the first study to report infection rates among HCWs during the peak of the SARS-CoV-2 epidemic in France and the lockdown period, highlighting the risk related to occupational profile and household transmission.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 363
Author(s):  
Vânia M. Moreira ◽  
Paulo Mascarenhas ◽  
Vanessa Machado ◽  
João Botelho ◽  
José João Mendes ◽  
...  

The rapid and accurate testing of SARS-CoV-2 infection is still crucial to mitigate, and eventually halt, the spread of this disease. Currently, nasopharyngeal swab (NPS) and oropharyngeal swab (OPS) are the recommended standard sampling techniques, yet, these have some limitations such as the complexity of collection. Hence, several other types of specimens that are easier to obtain are being tested as alternatives to nasal/throat swabs in nucleic acid assays for SARS-CoV-2 detection. This study aims to critically appraise and compare the clinical performance of RT-PCR tests using oral saliva, deep-throat saliva/posterior oropharyngeal saliva (DTS/POS), sputum, urine, feces, and tears/conjunctival swab (CS) against standard specimens (NPS, OPS, or a combination of both). In this systematic review and meta-analysis, five databases (PubMed, Scopus, Web of Science, ClinicalTrial.gov and NIPH Clinical Trial) were searched up to the 30th of December, 2020. Case-control and cohort studies on the detection of SARS-CoV-2 were included. The methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS 2). We identified 1560 entries, 33 of which (1.1%) met all required criteria and were included for the quantitative data analysis. Saliva presented the higher accuracy, 92.1% (95% CI: 70.0–98.3), with an estimated sensitivity of 83.9% (95% CI: 77.4–88.8) and specificity of 96.4% (95% CI: 89.5–98.8). DTS/POS samples had an overall accuracy of 79.7% (95% CI: 43.3–95.3), with an estimated sensitivity of 90.1% (95% CI: 83.3–96.9) and specificity of 63.1% (95% CI: 36.8–89.3). The remaining index specimens could not be adequately assessed given the lack of studies available. Our meta-analysis shows that saliva samples from the oral region provide a high sensitivity and specificity; therefore, these appear to be the best candidates for alternative specimens to NPS/OPS in SARS-CoV-2 detection, with suitable protocols for swab-free sample collection to be determined and validated in the future. The distinction between oral and extra-oral salivary samples will be crucial, since DTS/POS samples may induce a higher rate of false positives. Urine, feces, tears/CS and sputum seem unreliable for diagnosis. Saliva testing may increase testing capacity, ultimately promoting the implementation of truly deployable COVID-19 tests, which could either work at the point-of-care (e.g. hospitals, clinics) or at outbreak control spots (e.g., schools, airports, and nursing homes).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert Markewitz ◽  
Antje Torge ◽  
Klaus-Peter Wandinger ◽  
Daniela Pauli ◽  
Andre Franke ◽  
...  

AbstractLaboratory testing for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) consists of two pillars: the detection of viral RNA via rt-PCR as the diagnostic gold standard in acute cases, and the detection of antibodies against SARS-CoV-2. However, concerning the latter, questions remain about their diagnostic and prognostic value and it is not clear whether all patients develop detectable antibodies. We examined sera from 347 Spanish COVID-19 patients, collected during the peak of the epidemic outbreak in Spain, for the presence of IgA and IgG antibodies against SARS-CoV-2 and evaluated possible associations with age, sex and disease severity (as measured by duration of hospitalization, kind of respiratory support, treatment in ICU and death). The presence and to some degree the levels of anti-SARS-CoV-2 antibodies depended mainly on the amount of time between onset of symptoms and the collection of serum. A subgroup of patients did not develop antibodies at the time of sample collection. Compared to the patients that did, no differences were found. The presence and level of antibodies was not associated with age, sex, duration of hospitalization, treatment in the ICU or death. The case-fatality rate increased exponentially with older age. Neither the presence, nor the levels of anti-SARS-CoV-2 antibodies served as prognostic markers in our cohort. This is discussed as a possible consequence of the timing of the sample collection. Age is the most important risk factor for an adverse outcome in our cohort. Some patients appear not to develop antibodies within a reasonable time frame. It is unclear, however, why that is, as these patients differ in no respect examined by us from those who developed antibodies.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252687
Author(s):  
Sukalyani Banik ◽  
Kaheerman Saibire ◽  
Shraddha Suryavanshi ◽  
Glenn Johns ◽  
Soumitesh Chakravorty ◽  
...  

Background Upper respiratory samples used to test for SARS-CoV-2 virus may be infectious and present a hazard during transport and testing. A buffer with the ability to inactivate SARS-CoV-2 at the time of sample collection could simplify and expand testing for COVID-19 to non-conventional settings. Methods We evaluated a guanidium thiocyanate-based buffer, eNAT™ (Copan) as a possible transport and inactivation medium for downstream Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) testing to detect SARS-CoV-2. Inactivation of SARS-CoV-2 USA-WA1/2020 in eNAT and in diluted saliva was studied at different incubation times. The stability of viral RNA in eNAT was also evaluated for up to 7 days at room temperature (28°C), refrigerated conditions (4°C) and at 35°C. Results SARS-COV-2 virus spiked directly in eNAT could be inactivated at >5.6 log10 PFU/ml within a minute of incubation. When saliva was diluted 1:1 in eNAT, no cytopathic effect (CPE) on VeroE6 cells was observed, although SARS-CoV-2 RNA could be detected even after 30 min incubation and after two cell culture passages. A 1:2 (saliva:eNAT) dilution abrogated both CPE and detectable viral RNA after as little as 5 min incubation in eNAT. SARS-CoV-2 RNA from virus spiked at 5X the limit of detection remained positive up to 7 days of incubation in all tested conditions. Conclusion eNAT and similar guanidinium thiocyanate-based media may be of value for transport, stabilization, and processing of clinical samples for RT-PCR based SARS-CoV-2 detection.


BioTechniques ◽  
2020 ◽  
Vol 68 (2) ◽  
pp. 65-71 ◽  
Author(s):  
Martyn Webb ◽  
Kate Manley ◽  
Mireia Olivan ◽  
Ingrid Guldvik ◽  
Malgorzata Palczynska ◽  
...  

Urine from patients with prostate cancer (PCa) contains gene transcripts that have been used for PCa diagnosis and prognosis. Historically, patient urine samples have been collected after a digital rectal examination of the prostate, which was thought necessary to boost the levels of prostatic secretions in the urine. We herein describe methodology that allows urine to be collected by patients at home and then posted to a laboratory for analysis. RNA yields and quality were comparable to those for post digital rectal examination urine, and there was improved sensitivity for the detection of TMPRSS2:ERG transcripts by RT-PCR. The At-Home collection protocol has opened up the potential to perform large-scale PCa studies without the inconvenience, cost, discomfort and expense of patients having to visit the clinic.


2019 ◽  
Vol 16 (4) ◽  
pp. 1198-1209
Author(s):  
Luis Garcia-Larrea ◽  
Caroline Perchet ◽  
Koichi Hagiwara ◽  
Nathalie André-Obadia

Sign in / Sign up

Export Citation Format

Share Document