scholarly journals Exploring Big Data Analytic Approaches to Cancer Blog Text Analysis (Preprint)

Author(s):  
Viju Raghupathi ◽  
Yilu Zhou ◽  
Wullianallur Raghupathi

BACKGROUND In recent years researchers have begun to realize the value of social media as a source for data that helps us understand health-related phenomena. Health blogs in particular are rich with information for decision-making. While there are web crawlers and blog analysis software that generate statistics related to blogs, these are relatively primitive and are not useful computationally to aid with the analysis and understanding of the social networks and medical blogs that are evolving around healthcare. There is a need for sophisticated tools to fill this gap. Furthermore, to our knowledge there are not many big data studies or applications in the text analytics of cancer blogs. This study attempts to fill this specific gap while analyzing cancer blogs. OBJECTIVE In this exploratory research, we examine the potential of applying big data analytic techniques to the analysis of blogs that exist in the cancer domain. Our objective is twofold: to extract from the blogs, patterns and insight about cancer diagnosis, treatment, and management; and to apply advanced computation techniques in processing large amounts of unstructured health data. METHODS We applied the big data analytics architecture of Hadoop MapReduce via the Cloudera platform to the analysis of cancer blog content, in order to extract patterns and insight on cancer diagnoses. We apply a series of algorithms to gain insight into the content and develop a vocabulary and taxonomy of keywords based on existing medical nomenclature. By applying a number of algorithms, we gained insight into the blog content. The study identifies, for instance, the most discussed topics as well as associations that relate to key phenomena RESULTS Using several text analytic algorithms, including word count, word association, clustering, and classification, we were able to identify and analyze the patterns and keywords in cancer blog postings. This gave insight into some of the key issues that are discussed in blogs such as the type of cancer (breast cancer being the dominant topic), diagnosis, treatments, and others. CONCLUSIONS In general, big data analytics has the potential to transform the way practitioners and researchers gain insight from health social media, especially those in free text, unstructured form. Big data analytics and applications in health-related social media are still at an early stage, and rapid acceleration is possible with the advancements in models, tools, and technologies.

Author(s):  
Viju Raghupathi ◽  
Yilu Zhou ◽  
Wullianallur Raghupathi

In this article, the authors explore the potential of a big data analytics approach to unstructured text analytics of cancer blogs. The application is developed using Cloudera platform's Hadoop MapReduce framework. It uses several text analytics algorithms, including word count, word association, clustering, and classification, to identify and analyze the patterns and keywords in cancer blog postings. This article establishes an exploratory approach to involving big data analytics methods in developing text analytics applications for the analysis of cancer blogs. Additional insights are extracted through various means, including the development of categories or keywords contained in the blogs, the development of a taxonomy, and the examination of relationships among the categories. The application has the potential for generalizability and implementation with health content in other blogs and social media. It can provide insight and decision support for cancer management and facilitate efficient and relevant searches for information related to cancer.


2022 ◽  
pp. 1843-1863
Author(s):  
Viju Raghupathi ◽  
Yilu Zhou ◽  
Wullianallur Raghupathi

In this article, the authors explore the potential of a big data analytics approach to unstructured text analytics of cancer blogs. The application is developed using Cloudera platform's Hadoop MapReduce framework. It uses several text analytics algorithms, including word count, word association, clustering, and classification, to identify and analyze the patterns and keywords in cancer blog postings. This article establishes an exploratory approach to involving big data analytics methods in developing text analytics applications for the analysis of cancer blogs. Additional insights are extracted through various means, including the development of categories or keywords contained in the blogs, the development of a taxonomy, and the examination of relationships among the categories. The application has the potential for generalizability and implementation with health content in other blogs and social media. It can provide insight and decision support for cancer management and facilitate efficient and relevant searches for information related to cancer.


2021 ◽  
Vol 13 ◽  
pp. 175628722199813
Author(s):  
B. M. Zeeshan Hameed ◽  
Aiswarya V. L. S. Dhavileswarapu ◽  
Nithesh Naik ◽  
Hadis Karimi ◽  
Padmaraj Hegde ◽  
...  

Artificial intelligence (AI) has a proven record of application in the field of medicine and is used in various urological conditions such as oncology, urolithiasis, paediatric urology, urogynaecology, infertility and reconstruction. Data is the driving force of AI and the past decades have undoubtedly witnessed an upsurge in healthcare data. Urology is a specialty that has always been at the forefront of innovation and research and has rapidly embraced technologies to improve patient outcomes and experience. Advancements made in Big Data Analytics raised the expectations about the future of urology. This review aims to investigate the role of big data and its blend with AI for trends and use in urology. We explore the different sources of big data in urology and explicate their current and future applications. A positive trend has been exhibited by the advent and implementation of AI in urology with data available from several databases. The extensive use of big data for the diagnosis and treatment of urological disorders is still in its early stage and under validation. In future however, big data will no doubt play a major role in the management of urological conditions.


2021 ◽  
pp. 074391562199967
Author(s):  
Raffaello Rossi ◽  
Agnes Nairn ◽  
Josh Smith ◽  
Christopher Inskip

The internet raises substantial challenges for policy makers in regulating gambling harm. The proliferation of gambling advertising on Twitter is one such challenge. However, the sheer scale renders it extremely hard to investigate using conventional techniques. In this paper the authors present three UK Twitter gambling advertising studies using both Big Data analytics and manual content analysis to explore the volume and content of gambling adverts, the age and engagement of followers, and compliance with UK advertising regulations. They analyse 890k organic adverts from 417 accounts along with data on 620k followers and 457k engagements (replies and retweets). They find that around 41,000 UK children follow Twitter gambling accounts, and that two-thirds of gambling advertising Tweets fail to fully comply with regulations. Adverts for eSports gambling are markedly different from those for traditional gambling (e.g. on soccer, casinos and lotteries) and appear to have strong appeal for children, with 28% of engagements with eSports gambling ads from under 16s. The authors make six policy recommendations: spotlight eSports gambling advertising; create new social-media-specific regulations; revise regulation on content appealing to children; use technology to block under-18s from seeing gambling ads; require ad-labelling of organic gambling Tweets; and deploy better enforcement.


Author(s):  
Joice K. Joseph ◽  
Karunakaran Akhil Dev ◽  
A.P. Pradeepkumar ◽  
Mahesh Mohan

Author(s):  
Mudassir Khan ◽  
Mohd Dilshad Ansari ◽  
Syed Yasmeen Shahdad

Have you ever wondered how companies that adopt big data and analytics have generated value? Which algorithm are they using for which situation? And what was the result? These points will be discussed in this chapter in order to highlight the importance of big data analytics. To this end, and in order to give a quick introduction to what is being done in data analytics applications and to trigger the reader's interest, the author introduces some applications examples. This will allow you, in more detail, to gain more insight into the types and uses of algorithms for data analysis. So, enjoy the examples.


Author(s):  
Balamurugan Balusamy ◽  
Priya Jha ◽  
Tamizh Arasi ◽  
Malathi Velu

Big data analytics in recent years had developed lightning fast applications that deal with predictive analysis of huge volumes of data in domains of finance, health, weather, travel, marketing and more. Business analysts take their decisions using the statistical analysis of the available data pulled in from social media, user surveys, blogs and internet resources. Customer sentiment has to be taken into account for designing, launching and pricing a product to be inducted into the market and the emotions of the consumers changes and is influenced by several tangible and intangible factors. The possibility of using Big data analytics to present data in a quickly viewable format giving different perspectives of the same data is appreciated in the field of finance and health, where the advent of decision support system is possible in all aspects of their working. Cognitive computing and artificial intelligence are making big data analytical algorithms to think more on their own, leading to come out with Big data agents with their own functionalities.


Sign in / Sign up

Export Citation Format

Share Document