scholarly journals The Postencounter Form System: Viewpoint on Efficient Data Collection Within Electronic Health Records (Preprint)

2019 ◽  
Author(s):  
Philip Held ◽  
Randy A Boley ◽  
Walter G Faig ◽  
John A O'Toole ◽  
Imran Desai ◽  
...  

UNSTRUCTURED Electronic health records (EHRs) offer opportunities for research and improvements in patient care. However, challenges exist in using data from EHRs due to the volume of information existing within clinical notes, which can be labor intensive and costly to transform into usable data with existing strategies. This case report details the collaborative development and implementation of the postencounter form (PEF) system into the EHR at the Road Home Program at Rush University Medical Center in Chicago, IL to address these concerns with limited burden to clinical workflows. The PEF system proved to be an effective tool with over 98% of all clinical encounters including a completed PEF within 5 months of implementation. In addition, the system has generated over 325,188 unique, readily-accessible data points in under 4 years of use. The PEF system has since been deployed to other settings demonstrating that the system may have broader clinical utility.

10.2196/17429 ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. e17429
Author(s):  
Philip Held ◽  
Randy A Boley ◽  
Walter G Faig ◽  
John A O'Toole ◽  
Imran Desai ◽  
...  

Electronic health records (EHRs) offer opportunities for research and improvements in patient care. However, challenges exist in using data from EHRs due to the volume of information existing within clinical notes, which can be labor intensive and costly to transform into usable data with existing strategies. This case report details the collaborative development and implementation of the postencounter form (PEF) system into the EHR at the Road Home Program at Rush University Medical Center in Chicago, IL to address these concerns with limited burden to clinical workflows. The PEF system proved to be an effective tool with over 98% of all clinical encounters including a completed PEF within 5 months of implementation. In addition, the system has generated over 325,188 unique, readily-accessible data points in under 4 years of use. The PEF system has since been deployed to other settings demonstrating that the system may have broader clinical utility.


2021 ◽  
Author(s):  
Ye Seul Bae ◽  
Kyung Hwan Kim ◽  
Han Kyul Kim ◽  
Sae Won Choi ◽  
Taehoon Ko ◽  
...  

BACKGROUND Smoking is a major risk factor and important variable for clinical research, but there are few studies regarding automatic obtainment of smoking classification from unstructured bilingual electronic health records (EHR). OBJECTIVE We aim to develop an algorithm to classify smoking status based on unstructured EHRs using natural language processing (NLP). METHODS With acronym replacement and Python package Soynlp, we normalize 4,711 bilingual clinical notes. Each EHR notes was classified into 4 categories: current smokers, past smokers, never smokers, and unknown. Subsequently, SPPMI (Shifted Positive Point Mutual Information) is used to vectorize words in the notes. By calculating cosine similarity between these word vectors, keywords denoting the same smoking status are identified. RESULTS Compared to other keyword extraction methods (word co-occurrence-, PMI-, and NPMI-based methods), our proposed approach improves keyword extraction precision by as much as 20.0%. These extracted keywords are used in classifying 4 smoking statuses from our bilingual clinical notes. Given an identical SVM classifier, the extracted keywords improve the F1 score by as much as 1.8% compared to those of the unigram and bigram Bag of Words. CONCLUSIONS Our study shows the potential of SPPMI in classifying smoking status from bilingual, unstructured EHRs. Our current findings show how smoking information can be easily acquired and used for clinical practice and research.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2013
Author(s):  
Shams Ud Din ◽  
Zahoor Jan ◽  
Muhammad Sajjad ◽  
Maqbool Hussain ◽  
Rahman Ali ◽  
...  

Security and privacy are essential requirements, and their fulfillment is considered one of the most challenging tasks for healthcare organizations to manage patient data using electronic health records. Electronic health records (clinical notes, images, and documents) become more vulnerable to breaching patients’ privacy when shared with an external organization in the current arena of the internet of medical things (IoMT). Various watermarking techniques were introduced in the medical field to secure patients’ data. Most of the existing techniques focus on an image or document’s imperceptibility without considering the watermark(logo). In this research, a novel technique of watermarking is introduced, which supersedes the shortcomings of existing approaches. It guarantees the imperceptibility of the image/document and takes care of watermark(biometric), which is further passed through a process of recognition for claiming ownership. It extracts suitable frequencies from the transform domain using specialized filters to increase the robustness level. The extracted frequencies are modified by adding the biomedical information while considering the strength factor according to the human visual system. The watermarked frequencies are further decomposed through a singular value decomposition technique to increase payload capacity up to (256 × 256). Experimental results over a variety of medical and official images demonstrate the average peak signal-to-noise ratio (PSNR 54.43), and the normal correlation (N.C.) value is 1. PSNR and N.C. of the watermark were calculated after attacks. The proposed technique is working in real-time for embedding, extraction, and recognition of biometrics over the internet, and its uses can be realized in various platforms of IoMT technologies.


2019 ◽  
Vol 26 (11) ◽  
pp. 1379-1384 ◽  
Author(s):  
James J Cimino

Abstract Complaints about electronic health records, including information overload, note bloat, and alert fatigue, are frequent topics of discussion. Despite substantial effort by researchers and industry, complaints continue noting serious adverse effects on patient safety and clinician quality of life. I believe solutions are possible if we can add information to the record that explains the “why” of a patient’s care, such as relationships between symptoms, physical findings, diagnostic results, differential diagnoses, therapeutic plans, and goals. While this information may be present in clinical notes, I propose that we modify electronic health records to support explicit representation of this information using formal structure and controlled vocabularies. Such information could foster development of more situation-aware tools for data retrieval and synthesis. Informatics research is needed to understand what should be represented, how to capture it, and how to benefit those providing the information so that their workload is reduced.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Alison Callahan ◽  
Jason A. Fries ◽  
Christopher Ré ◽  
James I. Huddleston ◽  
Nicholas J. Giori ◽  
...  

Abstract Post-market medical device surveillance is a challenge facing manufacturers, regulatory agencies, and health care providers. Electronic health records are valuable sources of real-world evidence for assessing device safety and tracking device-related patient outcomes over time. However, distilling this evidence remains challenging, as information is fractured across clinical notes and structured records. Modern machine learning methods for machine reading promise to unlock increasingly complex information from text, but face barriers due to their reliance on large and expensive hand-labeled training sets. To address these challenges, we developed and validated state-of-the-art deep learning methods that identify patient outcomes from clinical notes without requiring hand-labeled training data. Using hip replacements—one of the most common implantable devices—as a test case, our methods accurately extracted implant details and reports of complications and pain from electronic health records with up to 96.3% precision, 98.5% recall, and 97.4% F1, improved classification performance by 12.8–53.9% over rule-based methods, and detected over six times as many complication events compared to using structured data alone. Using these additional events to assess complication-free survivorship of different implant systems, we found significant variation between implants, including for risk of revision surgery, which could not be detected using coded data alone. Patients with revision surgeries had more hip pain mentions in the post-hip replacement, pre-revision period compared to patients with no evidence of revision surgery (mean hip pain mentions 4.97 vs. 3.23; t = 5.14; p < 0.001). Some implant models were associated with higher or lower rates of hip pain mentions. Our methods complement existing surveillance mechanisms by requiring orders of magnitude less hand-labeled training data, offering a scalable solution for national medical device surveillance using electronic health records.


2017 ◽  
Vol 152 ◽  
pp. 53-70 ◽  
Author(s):  
Santiago Esteban ◽  
Manuel Rodríguez Tablado ◽  
Francisco E. Peper ◽  
Yamila S. Mahumud ◽  
Ricardo I. Ricci ◽  
...  

2020 ◽  
Vol 38 (4_suppl) ◽  
pp. 679-679
Author(s):  
Limor Appelbaum ◽  
Jose Pablo Cambronero ◽  
Karla Pollick ◽  
George Silva ◽  
Jennifer P. Stevens ◽  
...  

679 Background: Pancreatic Adenocarcinoma (PDAC) is often diagnosed at an advanced stage. We sought to develop a model for early PDAC prediction in the general population, using electronic health records (EHRs) and machine learning. Methods: We used three EHR datasets from Beth-Israel Deaconess Medical Center (BIDMC) and Partners Healthcare (PHC): 1. “BIDMC-Development-Data” (BIDMC-DD) for model development, using a feed-forward neural network (NN) and L2-regularized logistic regression,randomly split (80:20) into training and test groups. We tuned hyperparameters using cross-validation in training, and report performance on the test split. 2. “BIDMC-Large-Data” (BIDMC-LD) to re-fit and calibrate models. 3. “PHC-Data” for external validation. We evaluate using Area Under the Receiver Operating Characteristic Curve (AUC) and compute 95% CI using empirical bootstrap over test data. PDAC patients were selected using ICD9/-10 codes and validated with tumor registries. In contrast to prior work, we did not predefine feature sets based on known clinical correlates and instead employed data-driven feature selection, specifically importance-based feature pruning, regularization, and manual validation, to identify diagnostic-based features. Results: BIDMC-DD included demographics, diagnoses, labs and medications for 1018 patients (cases = 509; age-sex paired controls). BIDMC-LD included diagnoses for 547,917 patients (cases = 509), and PHC included diagnoses for 160,593 patients (cases = 408). We compared our approach to adapted and re-fitted published baselines. With a 365-day lead-time, NN obtained a BIDMC-DD test AUC of 0.84 (CI 0.79 - 0.90) versus the previous best baseline AUC of 0.70 (CI 0.62 - 0.78). We also validated using BIDMC-DD’s test cancer patients and BIDMC LD controls. The AUC was 0.71 (CI 0.67 - 0.76) at the 365-day cutoff. NN’s external validation AUC on PHC-Data was 0.71 (CI 0.63 - 0.79), outperforming an existing model’s AUC of 0.61 (CI 0.52 - 0.70) (Baecker et al, 2019). Conclusions: Models based on data-driven feature selection outperform models that use predefined sets of known clinical correlates and can help in early prediction of PDAC development.


2018 ◽  
Vol 13 (4) ◽  
pp. 783-789 ◽  
Author(s):  
Ariana R. Pichardo-Lowden ◽  
Paul M. Haidet

Multiple factors hinder the management of diabetes in hospitals. Amid the demands of practice, health care providers must collect, collate, and analyze multiple data points to optimally interpret glucose control and manage insulin dosing. Such data points are commonly dispersed in different sections of electronic health records (EHR), and the system for data display and physician interaction with the EHR are often poorly conducive to seamless clinical decision making. In this perspective article, we examine challenges in the process of EHR data retrieval, interpretation and decision making, using glucose management as an exemplar. We propose a conceptual, systems-based design for closing the loop between data gathering, analysis and decision making in the management of inpatient diabetes. This concept capitalizes on attributes of the EHR that can enable automated recognition of cases and provision of clinical recommendations.


2015 ◽  
Vol 22 (4) ◽  
pp. 900-904 ◽  
Author(s):  
Dean F Sittig ◽  
Daniel R Murphy ◽  
Michael W Smith ◽  
Elise Russo ◽  
Adam Wright ◽  
...  

Abstract Accurate display and interpretation of clinical laboratory test results is essential for safe and effective diagnosis and treatment. In an attempt to ascertain how well current electronic health records (EHRs) facilitated these processes, we evaluated the graphical displays of laboratory test results in eight EHRs using objective criteria for optimal graphs based on literature and expert opinion. None of the EHRs met all 11 criteria; the magnitude of deficiency ranged from one EHR meeting 10 of 11 criteria to three EHRs meeting only 5 of 11 criteria. One criterion (i.e., the EHR has a graph with y-axis labels that display both the name of the measured variable and the units of measure) was absent from all EHRs. One EHR system graphed results in reverse chronological order. One EHR system plotted data collected at unequally-spaced points in time using equally-spaced data points, which had the effect of erroneously depicting the visual slope perception between data points. This deficiency could have a significant, negative impact on patient safety. Only two EHR systems allowed users to see, hover-over, or click on a data point to see the precise values of the x–y coordinates. Our study suggests that many current EHR-generated graphs do not meet evidence-based criteria aimed at improving laboratory data comprehension.


Sign in / Sign up

Export Citation Format

Share Document