Steady State Overvoltages of TCSC Terminals and Their Impact on Degree of Compensation and Transmitted Power of Radical Power System

Author(s):  
Fawzi A. Rahman Al Jowder

This paper studies, in a tutorial form, the impact of location of the TCSC on the degree of compensation and the transmitted power of a radial power system. The voltages of the two terminals of the TCSC have been examined at different locations with increase in the degree of compensation and transmitted power. The objective is to limit these voltages to 1.05 pu and obtaining maximum degree of compensation. Two cases were studied: (1) The case when the receiving end is a large AC system where the receiving end voltage is always maintained at 1.0 pu which is designated as case # 1 and (2) The case when the receiving end is an inductive load (R-L) load and it is designated as case # 2. For case #1, it has been found that sitting the TCSC at the sending or receiving end causes a large overvoltage. In contrast, sitting it at the midpoint could not cause overvoltage up to 0.5 degree of compensation. If it is higher than this value, overvoltage has been found. Thus placing the TCSC at the midpoint provides a compensation range up to 0.5. If the TCSC are disparted in two or three smaller TCSCs, which are equal in size and equally spaced along the transmission line, it has been found that higher degree of compensation can be obtained. This scheme has been found to be best compensation scheme to obtain a wide compensation range. In case 2, the sending end positioning has been found to cause overvoltage while the receiving end positioning provides a wide compensation range up to 1 without overvoltage at any point. Similar to case # 1, sitting the TCSC at the midpoint causes overvoltage at a degree of compensation greater than 0.5. For distributed TCSCs, a degree of compensation greater 0.5 can be obtained and the maximum degree of compensation depends upon the number of TCSCs. For case # 2, the best position has been found to be at the load end. In addition to the two study cases, a relation between the number of the distributed TCSCs and the maximum degree of compensation has been developed.

2012 ◽  
Vol 433-440 ◽  
pp. 7208-7212
Author(s):  
Ya Min Su Hlaing ◽  
Ze Ya Aung

This thesis implements power flow application, Newton-Raphson method. The Newton-Raphson method is mainly employed in the solution of power flow problems. The network of Myanma electric power system is used as the reference case. The system network contains 90 buses and 106 brunches. The weak points are found in the network by using Newton-Raphson method. Bus 16, 17, 85 and 86 have the most weak bus voltages. The medium transmission line between bus 87 and bus 17 is compensated by using MATLAB program software. The transmission line is compensated with shunt reactors, series and shunt capacitors to improve transient and steady-state stability, more economical loading, and minimum voltage dip on load buses and to supply the requisite reactive power to maintain the receiving end voltage at a satisfactory level. The system performance is tested under steady-state condition. This paper investigates and improves the steady–state operation of Myanma Power System Network.


2018 ◽  
Vol 3 (10) ◽  
pp. 38-44
Author(s):  
D. C. Idoniboyeobu ◽  
S. L. Braide ◽  
Wigwe Elsie Chioma

This research work proposed an improved Resonant Fault Current Limiting (RFCL) protection scheme to reduce the impact of three-phase short-circuit faults in a power system sub-transmission network. The model used an interpolator-extrapolator technique based on a Resonant Fault Current Limiter (RFCL) for automating the procedure of predicting the required reactor value that must be in resonant circuit to limit the short-circuit current values to permissible values. Using the developed model, short-circuit fault simulations on the three phases of the transmission line (Phase A-C) were performed in the MATLAB-SIMULINK environment. Simulation results were obtained by varying the resonant inductance (reactor) parameter of the RFCL circuit for each of the phases to obtain permissible short-circuit current levels and the values used to program a functional interpolator-extrapolator in MATLAB; the resonant values were typically set to values of inductance equal to 0.001H, 0.01H and from 0.1H to 0.5H in steps of 0.1H. Simulation results revealed the presence of very high short-circuit current levels at low values of the resonant inductor. From the results of simulations, there are indications that the RFCL approach is indeed very vital in the reduction of the short circuit current values during the fault and can safeguard the circuit breaker mechanism in the examined power system sub-transmission system. In addition, lower fault clearing times can be obtained at higher values of inductances; however, the clearance times start to converge at inductance values of 0.1H and above.


2013 ◽  
Vol 385-386 ◽  
pp. 1011-1016
Author(s):  
Ying Yun Sun ◽  
Zhao Yu Jin ◽  
Tian Jiao Pu ◽  
Ting Yu ◽  
Wei Wang ◽  
...  

With the continuous improvement of wind power penetration, the impact of the random fluctuation characteristics of wind power on the frequency control of the power system is growing. Currently, researchers began to study the methods of wind farms participation in frequency control to reduce the frequency adjustment pressure of other power plants and increase the wind power penetration. However, the existing simulation software for the short and long term frequency control of the power system is not so good. So in order to analyze the impact of load fluctuations or wind farm power fluctuations on system frequency control, this paper propose a frequency fluctuation simulation method based on the quasi-steady-state method.


2012 ◽  
Vol 516-517 ◽  
pp. 1332-1336
Author(s):  
Zhong Cheng Li ◽  
Bu Han Zhang ◽  
Cheng Xiong Mao ◽  
Kui Wang

With the proportion of the installed capacity of wind farm in the grid increasing, the impact of wind farm on the power system security becomes obvious. The steady-state security analysis is one of the important measures to improve the power system security. Based on DC flow, considering the available transmission capability limit, the paper chooses the biggest security region volume as objective function with the upper and lower limits of security region multi-dimensional cuboid being as control variables, which transforms the maximum steady-state security region into nonlinear programming problem with linear constraints. This not only includes the biggest points for the safe operation, but also the order expansion problem doesn’t exist. Then Lagrange-Quasi-Newton is used to solve the equation, and the analysis of the example proves the feasibility of the proposed model and algorithm. Then we assume that wind speed distribution is weibull distribution, so we can assess the safe operation probability of wind power.


2020 ◽  
Vol 2 (1) ◽  
pp. 75-80
Author(s):  
Ganesh Bhandari ◽  
Bishal Rimal ◽  
Sandeep Neupane

 Power is an essential requirement for the economic development of any country. To maintain the generation of electric power at an adequate level the power has to be transmitted in a proper form to the consumer. For determination of line losses, voltage profiles and expansion of system, load flow analysis is most essential tools. This paper deals with the impact analysis of new 220 kV and 400 kV lines on Interconnected Nepal Power System (132 kV grid) in Electrical Transient Analyzer Program (ETAP). It represents the present scenario of the power system of Nepal and their impact analysis. Load flow result of existing 132 kV line shows that there is about 44.56 MW active power losses in the transmission line before any compensation techniques. After the Optimal Capacitor Placement, in the existing transmission line the active power loss decreases to about 34.224 MW as well as the voltage profile at each bus improves. The load flow result of the under construction 220 kV and 400 kV lines on the existing line shows that the total system loss would decrease to about 27.445 MW with the voltage profile improvement. The simulated model, result and analysis are presented in this paper.


2020 ◽  
Vol 6 (3) ◽  
pp. 27-30
Author(s):  
Pramod Kumar Mehar ◽  
Mrs. Madhu Upadhyay

Power system stability is related to principles of rotational motion and the swing equation governing the electromechanical dynamic behavior. In the special case of two finite machines the equal area criterion of stability can be used to calculate the critical clearing angle on the power system, it is necessary to maintain synchronism, otherwise a standard of service to the consumers will not be achieved. With the increasing penetration of doubly fed induction generators (DFIGs), the impact of the DFIG on transient stability attracts great attention. Transient stability is largely dominated by generator types in the power system, and the dynamic characteristics of DFIG wind turbines are different from that of the synchronous generators in the conventional power plants. The analysis of the transient stability on DFIG integrated power systems has become a very important issue. This paper is a review of three types of stability condition. The first type of stability, steady state stability explains the maximum steady state power and the power angle diagram. There are several methods to improve system stability in which some methods are explained.


2019 ◽  
Vol 28 ◽  
pp. 01004
Author(s):  
Piotr Pruski ◽  
Stefan Paszek

In the paper, the waveforms of the output quantities of different mathematical models of a synchronous generator operating in a power system (PS) are compared. In the investigations, it was assumed that the PS consisted of a generating unit (including, among others, a synchronous generator) connected to a bus by a high voltage transmission line. The disturbances of the steady state in the form of symmetrical and asymmetrical short-circuits in a selected place of the transmission line were considered. In the generator model, the subtransient asymmetry was taken into account. The XT and RL models of the synchronous generator when assuming different input and output quantities of the system were investigated.


Sign in / Sign up

Export Citation Format

Share Document