Anisotropy of the rock drill core elastic properties at uniaxial loading

2003 ◽  
Vol 5 (4) ◽  
pp. 299-306 ◽  
Author(s):  
A. V. Patonin
2018 ◽  
Vol 59 ◽  
pp. 216
Author(s):  
Emmanuel Addo Jr ◽  
Emmanuel Knox Chanda ◽  
Andre Viggo Metcalfe

Geophysics ◽  
1972 ◽  
Vol 37 (4) ◽  
pp. 675-693 ◽  
Author(s):  
Leif Løvborg ◽  
Harold Wollenberg ◽  
John Rose‐Hansen ◽  
Bjarne Leth Nielsen

A system has been developed for the continuous and stepwise scanning of rock drill cores for gamma‐ray spectrometric determinations of uranium, thorium, and potassium. The apparatus accomodates 3‐ to 4‐cm‐diameter core as it passes two opposing 2‐inch diameter by 3‐inch‐ thick NaI(Tl) detectors, either continuously, at speeds ranging from one to several meters per hour, or in steps of 5 cm or more. Resulting gamma‐ray spectra, as recorded with a multi channel analyzer, are computer processed, furnishing scale diagrams of individual radioelement contents and Th/U ratios in the core. Whole‐rock assays of one‐meter‐long core sections by continuous scanning are accurate and precise to within 10 percent or better. In the step‐scanning mode, the system can resolve peak concentrations of U and Th with an accuracy of about 15 percent. Continuous one‐meter scans of 3500 m of core from the Ilímaussaq intrusion, South Greenland, provided an evaluation of uranium resources in the course of seven months. Examination of the continuous‐scan diagrams indicated areas of geochemical interest, such as sharp and transitional contacts and mineralized zones. These were investigated more closely by step scanning, disclosing detailed variations of U and Th. Contents of U and Th determined by scanning of drill core were consistent with the gross gamma‐ray counting rates measured in the boreholes.


Author(s):  
Amy M. McGough ◽  
Robert Josephs

The remarkable deformability of the erythrocyte derives in large part from the elastic properties of spectrin, the major component of the membrane skeleton. It is generally accepted that spectrin's elasticity arises from marked conformational changes which include variations in its overall length (1). In this work the structure of spectrin in partially expanded membrane skeletons was studied by electron microscopy to determine the molecular basis for spectrin's elastic properties. Spectrin molecules were analysed with respect to three features: length, conformation, and quaternary structure. The results of these studies lead to a model of how spectrin mediates the elastic deformation of the erythrocyte.Membrane skeletons were isolated from erythrocyte membrane ghosts, negatively stained, and examined by transmission electron microscopy (2). Particle lengths and end-to-end distances were measured from enlarged prints using the computer program MACMEASURE. Spectrin conformation (straightness) was assessed by calculating the particles’ correlation length by iterative approximation (3). Digitised spectrin images were correlation averaged or Fourier filtered to improve their signal-to-noise ratios. Three-dimensional reconstructions were performed using a suite of programs which were based on the filtered back-projection algorithm and executed on a cluster of Microvax 3200 workstations (4).


Author(s):  
A.R. Thölén

Thin electron microscope specimens often contain irregular bend contours (Figs. 1-3). Very regular bend patterns have, however, been observed around holes in some ion-milled specimens. The purpose of this investigation is twofold. Firstly, to find the geometry of bent specimens and the elastic properties of extremely thin foils and secondly, to obtain more information about the background to the observed regular patterns.The specimen surface is described by z = f(x,y,p), where p is a parameter, eg. the radius of curvature of a sphere. The beam is entering along the z—direction, which coincides with the foil normal, FN, of the undisturbed crystal surface (z = 0). We have here used FN = [001]. Furthermore some low indexed reflections are chosen around the pole FN and in our fcc crystal the following g-vectors are selected:


1995 ◽  
Vol 05 (C8) ◽  
pp. C8-729-C8-734
Author(s):  
A.I. Lotkov ◽  
V.P. Lapshin ◽  
V.A. Goncharova ◽  
H.V Chernysheva ◽  
V.N. Grishkov ◽  
...  

2015 ◽  
Vol 185 (11) ◽  
pp. 1215-1224 ◽  
Author(s):  
Yurii Kh. Vekilov ◽  
Oleg M. Krasil'nikov ◽  
Andrei V. Lugovskoy

Sign in / Sign up

Export Citation Format

Share Document