Currents and water structure north of the Vema Channel

2018 ◽  
Vol 18 (5) ◽  
pp. 1-6 ◽  
Author(s):  
E. G. Morozov ◽  
R. Yu. Tarakanov ◽  
D. I. Frey ◽  
D. G. Borisov
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bijaya B. Karki ◽  
Dipta B. Ghosh ◽  
Shun-ichiro Karato

AbstractWater (H2O) as one of the most abundant fluids present in Earth plays crucial role in the generation and transport of magmas in the interior. Though hydrous silicate melts have been studied extensively, the experimental data are confined to relatively low pressures and the computational results are still rare. Moreover, these studies imply large differences in the way water influences the physical properties of silicate magmas, such as density and electrical conductivity. Here, we investigate the equation of state, speciation, and transport properties of water dissolved in Mg1−xFexSiO3 and Mg2(1−x)Fe2xSiO4 melts (for x = 0 and 0.25) as well as in its bulk (pure) fluid state over the entire mantle pressure regime at 2000–4000 K using first-principles molecular dynamics. The simulation results allow us to constrain the partial molar volume of the water component in melts along with the molar volume of pure water. The predicted volume of silicate melt + water solution is negative at low pressures and becomes almost zero above 15 GPa. Consequently, the hydrous component tends to lower the melt density to similar extent over much of the mantle pressure regime irrespective of composition. Our results also show that hydrogen diffuses fast in silicate melts and enhances the melt electrical conductivity in a way that differs from electrical conduction in the bulk water. The speciation of the water component varies considerably from the bulk water structure as well. Water is dissolved in melts mostly as hydroxyls at low pressure and as –O–H–O–, –O–H–O–H– and other extended species with increasing pressure. On the other hand, the pure water behaves as a molecular fluid below 15 GPa, gradually becoming a dissociated fluid with further compression. On the basis of modeled density and conductivity results, we suggest that partial melts containing a few percent of water may be gravitationally trapped both above and below the upper mantle-transition region. Moreover, such hydrous melts can give rise to detectable electrical conductance by means of electromagnetic sounding observations.


2014 ◽  
Vol 70 (a1) ◽  
pp. C10-C10
Author(s):  
John Helliwell

I will give an overview of synchrotron radiation (SR) in macromolecular crystallography (MX) instrumentation, methods and applications from the early days to the present, including the evolution of SR sources and on to the `ultimate storage ring'. The build of dedicated beamlines for resonant anomalous scattering, large unit cells, ever smaller crystals and studies up to ultra-high resolution are core benefits. Results include a high output of PDB depositions, the successful use of microcrystals, pushing the frontiers of using high and low photon energies and time-resolved structural studies at even sub-nanosecond resolutions. These intensively physics based developments will be complemented by biological and chemical crystallography research results, encompassing catalysis and marine coloration, as well as the public understanding of our science and its impacts. Spin off benefits include services to the pharmaceutical industry and helping develop chemical crystallography uses of SR. The development of the Laue method with SR has led to pioneering spin off developments in neutron MX, including transfer of the well validated Daresbury Laue software to various neutron facilities worldwide. Neutron MX is gathering pace as new instrumentation and dedicated sample preparation facilities are in place at reactor and spallation neutron sources; smaller samples and much larger molecular weight protein complexes are now feasible for investigation so as to establish their protonation states and bound water structure. With the X-ray lasers, closely linked to the SR developments, we anticipate the use of ever smaller samples such as nanocrystals, nanoclusters and single molecules, as well as opening up femtosecond time-resolved diffraction structural studies. At the SR sources, a very high throughput assessment for the best crystal samples and tackling sub-micron crystals will become widespread.


2017 ◽  
Vol 19 (32) ◽  
pp. 21540-21547 ◽  
Author(s):  
Qingcheng Hu ◽  
Haiwen Zhao ◽  
Shunli Ouyang

The OH/OD stretch band features on Raman spectra of isotopic substitution H2O/D2O at temperatures up to 573 K are correlated with a multi-structure model that water has five dominant hydrogen bonding configurations: tetrahedral, deformed tetrahedral, single donor, single hydrogen bonded water and free water.


2010 ◽  
Vol 21 (14) ◽  
pp. 1895-1910 ◽  
Author(s):  
Akira Mochizuki ◽  
Maki Kimura ◽  
Ayano Ina ◽  
Yuka Tomono ◽  
Masaru Tanaka

Sign in / Sign up

Export Citation Format

Share Document