scholarly journals Finite Element Analysis of the Energy Release Rate by Using the E-Integral Under the Compressive Loads.

1999 ◽  
pp. 251-263 ◽  
Author(s):  
Chikayoshi YATOMI ◽  
Youichi SUZUKI
2018 ◽  
Vol 52 (18) ◽  
pp. 2537-2547 ◽  
Author(s):  
Vishnu Saseendran ◽  
Leif A Carlsson ◽  
Christian Berggreen

Foundation effects play a crucial role in sandwich fracture specimens with a soft core. Accurate estimation of deformation characteristics at the crack front is vital in understanding compliance, energy release rate and mode-mixity in fracture test specimens. Beam on elastic foundation analysis of moment- and force-loaded single cantilever beam sandwich fracture specimens is presented here. In addition, finite element analysis of the single cantilever beam specimen is conducted to determine displacements, rotations, energy release rate and mode-mixity. Based on finite element analysis, a foundation modulus is proposed that closely agrees with the numerical compliance and energy release rate results for all cases considered. An analytical expression for crack root rotation of the loaded upper face sheet provides consistent results for both loading configurations. For the force-loaded single cantilever beam specimen (in contrast to the moment-loaded case), it was found that the crack length normalized energy release rate and the mode-mixity phase angle increase strongly as the crack length decreases, a result of increased dominance of shear loading.


2012 ◽  
Vol 21 (1) ◽  
pp. 096369351202100
Author(s):  
Liang Wang ◽  
Rui-Xiang Bai ◽  
Hao-Ran Chen

In this paper, a nonlinear finite element analysis of impact interfacial fracture for a piezoelectric composite is provided. The Newmark method was used to solve the dynamics equation. Virtual crack closure technique is to evaluate the energy release rate of crack tip. Contact elements were set up on crack surface and in the area in contact under impact loading to prevent the penetration between PZT and composite. The response curves of the energy release rate are obtained for piezoelectric composites. Numerical results are provided to show the effect of the piezoelectricity, the applied voltage, the stack sequence of composites and the contact of crack surface on the resulting dynamic energy release rate of piezoelectric composites.


1996 ◽  
Vol 24 (3) ◽  
pp. 220-235 ◽  
Author(s):  
T. G. Ebbott

Abstract A finite element-based method to analyze the severity of internal cracks in cord-rubber structures is presented. The method includes materials testing to characterize rubber fatigue behavior, a global-local finite element analysis to provide the detail necessary to model explicitly an internal crack, and use of the J-integral and virtual crack closure techniques for energy release rate evaluation. Analysis of the multiaxial and cyclic fracture situation is carried out by considering the cycle of each mode of fracture separately and then combining the effect of each mode to determine the total effect. Crack growth rates in the structure are assumed to be the same as the crack growth rate in a laboratory specimen at the same level of cyclic energy release rate. Results are presented for a material change in a critical tire region.


1987 ◽  
Vol 109 (1) ◽  
pp. 101-107 ◽  
Author(s):  
P. LeFort ◽  
H. G. deLorenzi ◽  
V. Kumar ◽  
M. D. German

The calculation of the energy release rate, G, by the virtual crack extension method has been used extensively in the literature over the last few years. A formulation and implementation of the energy release rate for use with 8 and 9-noded isoparametric thin shell elements is described in this paper. The representation used in the paper allows the calculation of G either as an integral part of a finite element analysis or separately in a postprocessing program using the stress and strain data from a finite element analysis as input. The results presented in the paper are compared with those published in the literature for several elastic as well as elastic-plastic crack problems.


2013 ◽  
Vol 795 ◽  
pp. 587-590 ◽  
Author(s):  
Ruslizam Daud ◽  
Ahmad Kamal Ariffin ◽  
S. Abdullah ◽  
M.S. Abdul Majid ◽  
M.A. Rojan

Stress shielding interaction effect of two parallel edge cracks in finite body under uniaxial loading is analysed using developed finite element (FE) analysis program. In present study, the stress shielding interaction is formulated as a mathematical model called stress shielding damage (SSD) model. SSD model used to define the combination and re-characterization of crack interaction from multiple cracks to single crack. Focus is given to weak crack interaction state as the crack interval exceed the length of cracks (b>a). The crack interaction factors are evaluated based on Griffith strain energy release rate and mode I SIF usingJ-integral analysis. For validation, the stress shielding factor parameters are compared to single edge crack SIF as a state of zero interaction in a form of crack unification limit (CUL) and crack interaction limit (CIL).


2018 ◽  
Vol 46 (3) ◽  
pp. 130-152
Author(s):  
Dennis S. Kelliher

ABSTRACT When performing predictive durability analyses on tires using finite element methods, it is generally recognized that energy release rate (ERR) is the best measure by which to characterize the fatigue behavior of rubber. By addressing actual cracks in a simulation geometry, ERR provides a more appropriate durability criterion than the strain energy density (SED) of geometries without cracks. If determined as a function of crack length and loading history, and augmented with material crack growth properties, ERR allows for a quantitative prediction of fatigue life. Complications arise, however, from extra steps required to implement the calculation of ERR within the analysis process. This article presents an overview and some details of a method to perform such analyses. The method involves a preprocessing step that automates the creation of a ribbon crack within an axisymmetric-geometry finite element model at a predetermined location. After inflating and expanding to three dimensions to fully load the tire against a surface, full ribbon sections of the crack are then incrementally closed through multiple solution steps, finally achieving complete closure. A postprocessing step is developed to determine ERR as a function of crack length from this enforced crack closure technique. This includes an innovative approach to calculating ERR as the crack length approaches zero.


Sign in / Sign up

Export Citation Format

Share Document