scholarly journals STUDY ON EFFICIENCY OF AIR POLLUTION CONTROL MEASURES IN GER AREA OF ULAANBAATAR IN MONGOLIA BASED ON FIELD SURVEY

Author(s):  
Enkhtsolmon OTGONBAYAR ◽  
Toru MATSUMOTO ◽  
Galimbek KHALTAI
2011 ◽  
Vol 11 (9) ◽  
pp. 25991-26007 ◽  
Author(s):  
R. Makkonen ◽  
A. Asmi ◽  
V.-M. Kerminen ◽  
M. Boy ◽  
A. Arneth ◽  
...  

Abstract. The number of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The total aerosol forcing (−1.61 W m−2 in year 2000) is simulated to be greatly reduced in the future, to −0.23 W m−2, mainly due to decrease in SO2 emissions and resulting decrease in new particle formation. With the total aerosol forcing decreasing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.


2020 ◽  
Vol 10 (17) ◽  
pp. 5970
Author(s):  
Hsin-Chih Lai ◽  
Min-Chuan Hsiao ◽  
Je-Liang Liou ◽  
Li-Wei Lai ◽  
Pei-Chih Wu ◽  
...  

A comparative analysis was conducted between the costs and health benefits of the Air Pollution Control Action Plan (APCAP), which can be implemented in any country to improve air quality and human health. In this study, air quality modeling was used to simulate several scenarios and implement the Kriging method to describe the PM2.5 reduction concentration instantly. Then, health benefits were estimated using the environmental benefit mapping and analysis program (BenMAP) with results from the air quality modeling and Kriging method. To estimate the priority of APCAP, 14 pollution control measures that cover point, mobile, and area sources of air pollution in Taiwan were analyzed. The results indicate that the health benefits of the Taiwan APCAP (TAPCAP) are generally greater than the technical costs. Thus, the implementation of this strategy may result in net benefits. In addition, the benefit-to-control cost ratio for health for the 14 pollution control measures was calculated. The results provide evidence to prioritize the implementation of air quality policies with a higher benefit-cost ratio.


2020 ◽  
pp. 0920203X2096823
Author(s):  
Gang Tian ◽  
Wen-Hsuan Tsai

Using the concept of ‘hedging’, we explore how local cadres in China deviate from central policies in order to serve local interests and, while doing so, avoid being called to account by their superiors. Political signals enable cadres to decide when to invest more resources into the implementation of certain policies. In this way, they optimize their performance and avoid the political risks involved in failing to carry out their designated tasks. This article uses county Y as an example in a discussion of county-level implementation of policies related to economic growth and air pollution control. We find that local cadres weaken the functions of the superior ‘special inspection team’ (专项督察组, hereafter inspection team), treating them as political instruments used by the central and local authorities to ensure a greater level of responsiveness at the grass roots. Information concerning the imminent arrival of an inspection team in their locality acts as a signal for cadres to allocate more resources to the enforcement of air pollution control measures, thus maximizing their performance in this area. Through this research, we have endeavoured to provide a deeper understanding of the operating logic of Chinese local governments and the behaviour of county cadres.


2019 ◽  
Vol 244 ◽  
pp. 127-137 ◽  
Author(s):  
Meifang Yu ◽  
Yun Zhu ◽  
Che-Jen Lin ◽  
Shuxiao Wang ◽  
Jia Xing ◽  
...  

2018 ◽  
Vol 21 (3) ◽  
pp. 695-705
Author(s):  
Stefan Åström ◽  
Gregor Kiesewetter ◽  
Wolfgang Schöpp ◽  
Robert Sander ◽  
Sofia Andersson

2019 ◽  
Author(s):  
Ka Lok Chan ◽  
Zhuoru Wang ◽  
Aijun Ding ◽  
Klaus-Peter Heue ◽  
Yicheng Shen ◽  
...  

Abstract. In this paper, we present long term observations of atmospheric nitrogen dioxide (NO2) and formaldehyde (HCHO) in Nanjing using a Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument. Ground based MAX-DOAS measurements were performed from April 2013 to February 2017. The MAX-DOAS measurements of NO2 and HCHO vertical column densities (VCDs) are used to validate OMI satellite observations over Nanjing. The comparison shows that the OMI observations of NO2 correlate well with the MAX-DOAS data with Pearson correlation coefficient (R) of 0.91. However, OMI observations are on average a factor of 3 lower than the MAX-DOAS measurements. Replacing the a priori NO2 profiles by the MAX-DOAS profiles in the OMI NO2 VCD retrieval would increase the OMI NO2 VCDs by ~ 30 % with correlation nearly unchanged. The comparison result of MAX-DOAS and OMI observations of HCHO VCD shows a good agreement with R of 0.75 and the slope of the regression line is 0.99. We developed a new technique to assemble the source contribution map using backward trajectory analysis. The age weighted backward propagation approach is applied to the MAX-DOAS measurements of NO2 and HCHO to reconstruct the spatial distribution of NO2 and HCHO over the Yangtze River Delta during summer and winter time. The reconstructed NO2 fields show a distinct agreement with OMI satellite observations. However, due to the short atmospheric lifetime of HCHO, the backward propagated HCHO data does not show a strong spatial correlation with the OMI HCHO observations. The result shows the MAX-DOAS measurements are sensitive to the air pollution transportation in the Yangtze River Delta, indicating the air quality in Nanjing is significantly influenced by regional transportation of air pollutants. The MAX-DOAS data are also used to evaluate the effectiveness of air pollution control measures implemented during the Youth Olympic Games 2014. The MAX-DOAS data show a significant reduction of ambient aerosol, NO2 and HCHO (30 %–50 %) during the Youth Olympic Games. Our results provide a better understanding of the transportation and sources of pollutants in over the Yangtze River Delta as well as the effect of emission control measures during large international event, which are important for the future design of air pollution control policies.


The aim of this contribution to the Meeting is to describe how the results of research work have been applied to the design of power stations in Britain. Before doing so, however, it is perhaps worth while giving an outline of the fundamental principles involved in the selection of air pollution control measures as they are seen by the engineers who must make practical decisions on plant design, and in this way define the specific objectives for the research work being undertaken. First, it must be appreciated that unless one accepts an exceedingly narrow definition of what constitutes air pollution, then clean air must be regarded as a matter of degree and not of kind. All sorts of naturally occurring gases and particulates pollute the atmosphere, even in places remote from mankind’s industrial and domestic activities. Volcanic dust and ashes, sulphur dioxide and other gases of geophysical origin, wind-blown dust, residues of sea-spray, pollen, spores, ozone, ammonia and many other substances exist quite naturally in the air we breathe. What constitutes an air pollution problem is the occurrence of pollutants in unduly high concentrations in a particular place or at a particular time. As a corollary of this, the aim of air pollution control measures is to prevent such high concentrations from occurring. This principle is fundamental to the whole concept of air pollution control, since once it is accepted then practical control measures need not necessarily be restricted to the prevention of the emission of pollutants, but can include also the manner of emission, in so far as this can influence subsequent concentrations of pollutants in the atmosphere


2021 ◽  
Vol 13 (19) ◽  
pp. 10968
Author(s):  
Juihui Chen ◽  
Xiaoqiong Feng ◽  
Yonghui Zhu ◽  
Ling Huang ◽  
Min He ◽  
...  

To continuously improve air quality, after implementation of the “Clean Air Action Plan, 2013–2017” (CAAP), the “Three-year Action Plan to Fight Air Pollution” (TYP) was further conducted from 2018 to 2020. However, the effectiveness of the TYP remains unclear in one of the major city-clusters of China, the Sichuan Basin. In this study, the bottom-up method was used to quantify the emission reduction during TYP based on the emissions inventory in Sichuan Basin in 2017 and the air pollution control measures adopted from 2018 to 2020 in each city. The reduction of PM2.5 concentration and the avoided premature deaths due to implementation of air pollution control measures were assessed by using an integrated meteorology and air quality modeling system and a concentration-response algorithm. Emissions of SO2, NOx, PM2.5, and VOCs in the Sichuan Basin have been reduced by 42.6, 105.2, 40.2, and 136.6 Gg, respectively. The control of non-electricity industry contributed significantly to the emission reduction of all pollutants, accounting for 26–49%. In addition, the control of mobile sources contributes the most to NOx reductions, accounting for 57%. The results illustrate that the focus of air pollution control in Sichuan Basin is still industrial sources. We also found that the emission reduction of NOx, PM2.5, and VOCs in Chengdu is significantly higher than that of other cities, which were about 3.4~15.4 times, 2.2~40.1 times, and 4.3~24.4 times that of other cities, respectively. In Sichuan Basin, the average reduction rate of PM2.5 concentration due to air pollution control measures was 5% on average, with the highest contributions from industry, mobile source, and dust emission control. The decrease rate in each city ranges between 1~10%, and the decreasing ratios in Dazhou (10%), Chengdu (8%), and Zigong (7%) are relatively higher. The number of premature deaths avoided due to air pollution control measures in Sichuan Basin is estimated to be 22,934. Chengdu and Dazhou have benefitted most from the air pollution control measures, with 6043 and 2713 premature deaths avoided, respectively. Our results indicate that the implementation of TYP has achieved remarkable environmental and health benefits.


Sign in / Sign up

Export Citation Format

Share Document