scholarly journals Using Costs and Health Benefits to Estimate the Priority of Air Pollution Control Action Plan: A Case Study in Taiwan

2020 ◽  
Vol 10 (17) ◽  
pp. 5970
Author(s):  
Hsin-Chih Lai ◽  
Min-Chuan Hsiao ◽  
Je-Liang Liou ◽  
Li-Wei Lai ◽  
Pei-Chih Wu ◽  
...  

A comparative analysis was conducted between the costs and health benefits of the Air Pollution Control Action Plan (APCAP), which can be implemented in any country to improve air quality and human health. In this study, air quality modeling was used to simulate several scenarios and implement the Kriging method to describe the PM2.5 reduction concentration instantly. Then, health benefits were estimated using the environmental benefit mapping and analysis program (BenMAP) with results from the air quality modeling and Kriging method. To estimate the priority of APCAP, 14 pollution control measures that cover point, mobile, and area sources of air pollution in Taiwan were analyzed. The results indicate that the health benefits of the Taiwan APCAP (TAPCAP) are generally greater than the technical costs. Thus, the implementation of this strategy may result in net benefits. In addition, the benefit-to-control cost ratio for health for the 14 pollution control measures was calculated. The results provide evidence to prioritize the implementation of air quality policies with a higher benefit-cost ratio.

2021 ◽  
Vol 13 (19) ◽  
pp. 10968
Author(s):  
Juihui Chen ◽  
Xiaoqiong Feng ◽  
Yonghui Zhu ◽  
Ling Huang ◽  
Min He ◽  
...  

To continuously improve air quality, after implementation of the “Clean Air Action Plan, 2013–2017” (CAAP), the “Three-year Action Plan to Fight Air Pollution” (TYP) was further conducted from 2018 to 2020. However, the effectiveness of the TYP remains unclear in one of the major city-clusters of China, the Sichuan Basin. In this study, the bottom-up method was used to quantify the emission reduction during TYP based on the emissions inventory in Sichuan Basin in 2017 and the air pollution control measures adopted from 2018 to 2020 in each city. The reduction of PM2.5 concentration and the avoided premature deaths due to implementation of air pollution control measures were assessed by using an integrated meteorology and air quality modeling system and a concentration-response algorithm. Emissions of SO2, NOx, PM2.5, and VOCs in the Sichuan Basin have been reduced by 42.6, 105.2, 40.2, and 136.6 Gg, respectively. The control of non-electricity industry contributed significantly to the emission reduction of all pollutants, accounting for 26–49%. In addition, the control of mobile sources contributes the most to NOx reductions, accounting for 57%. The results illustrate that the focus of air pollution control in Sichuan Basin is still industrial sources. We also found that the emission reduction of NOx, PM2.5, and VOCs in Chengdu is significantly higher than that of other cities, which were about 3.4~15.4 times, 2.2~40.1 times, and 4.3~24.4 times that of other cities, respectively. In Sichuan Basin, the average reduction rate of PM2.5 concentration due to air pollution control measures was 5% on average, with the highest contributions from industry, mobile source, and dust emission control. The decrease rate in each city ranges between 1~10%, and the decreasing ratios in Dazhou (10%), Chengdu (8%), and Zigong (7%) are relatively higher. The number of premature deaths avoided due to air pollution control measures in Sichuan Basin is estimated to be 22,934. Chengdu and Dazhou have benefitted most from the air pollution control measures, with 6043 and 2713 premature deaths avoided, respectively. Our results indicate that the implementation of TYP has achieved remarkable environmental and health benefits.


2019 ◽  
Vol 244 ◽  
pp. 127-137 ◽  
Author(s):  
Meifang Yu ◽  
Yun Zhu ◽  
Che-Jen Lin ◽  
Shuxiao Wang ◽  
Jia Xing ◽  
...  

2016 ◽  
Vol 97 (4) ◽  
pp. 553-559 ◽  
Author(s):  
Zhanshan Wang ◽  
Yunting Li ◽  
Tian Chen ◽  
Dawei Zhang ◽  
Lingjun Li ◽  
...  

Abstract The Beijing government has made great effort to solve the air pollution problem in recent years. In this paper, the major air pollution control measures and the air quality improvement from 2008 to 2014 in Beijing were represented. With the implementation of a series of unconventional and high–air pollutant reduction measures in Beijing and the surrounding area, good air quality during both the 2008 Olympic Games and the 2014 Asia–Pacific Economic Cooperation (APEC) conference was guaranteed. Notably, a new scientific approach was applied to formulate air pollution control policy during the APEC conference. In addition to the established measures, two periods of enhanced and targeted reduction measures were implemented according to the forecast in advance. Finally, suggestions for improving air quality in Beijing were offered on the basis of the monitoring results and analyses during the APEC conference.


2019 ◽  
Vol 19 (13) ◽  
pp. 8569-8590 ◽  
Author(s):  
Dongsheng Ji ◽  
Wenkang Gao ◽  
Willy Maenhaut ◽  
Jun He ◽  
Zhe Wang ◽  
...  

Abstract. As major chemical components of airborne fine particulate matter (PM2.5), organic carbon (OC) and elemental carbon (EC) have vital impacts on air quality, climate change, and human health. Because OC and EC are closely associated with fuel combustion, it is helpful for the scientific community and policymakers assessing the efficacy of air pollution control measures to study the impact of control measures and regional transport on OC and EC levels. In this study, hourly mass concentrations of OC and EC associated with PM2.5 were semi-continuously measured from March 2013 to February 2018. The results showed that annual mean OC and EC concentrations declined from 14.0 to 7.7 µg m−3 and from 4.0 to 2.6 µg m−3, respectively, from March 2013 to February 2018. In combination with the data of OC and EC in previous studies, an obvious decreasing trend in OC and EC concentrations was found, which was caused by clean energy policies and effective air pollution control measures. However, no obvious change in the ratios of OC and EC to the PM2.5 mass (on average, 0.164 and 0.049, respectively) was recorded, suggesting that inorganic ions still contributed a lot to PM2.5. Based on the seasonal variations in OC and EC, it appeared that higher OC and EC concentrations were still observed in the winter months, with the exception of winter of 2017–2018. Traffic policies executed in Beijing resulted in nighttime peaks of OC and EC, caused by heavy-duty vehicles and heavy-duty diesel vehicles being permitted to operate from 00:00 to 06:00 (China standard time, UTC+8, for all times throughout the paper). In addition, the fact that there was no traffic restriction in weekends led to higher concentrations on weekends compared to weekdays. Significant correlations between OC and EC were observed throughout the study period, suggesting that OC and EC originated from common emission sources, such as exhaust of vehicles and fuel combustion. OC and EC levels increased with enhanced SO2, CO, and NOx concentrations while the O3 and OC levels were enhanced simultaneously when O3 concentrations were higher than 50 µg m−3. Non-parametric wind regression analysis was performed to examine the sources of OC and EC in the Beijing area. It was found that there were distinct hot spots in the northeast wind sector at wind speeds of approximately 0–6 km h−1, as well as diffuse signals in the southwestern wind sectors. Source areas further away from Beijing were assessed by potential source contribution function (PSCF) analysis. A high-potential source area was precisely pinpointed, which was located in the northwestern and southern areas of Beijing in 2017 instead of solely in the southern areas of Beijing in 2013. This work shows that improvement of the air quality in Beijing benefits from strict control measures; however, joint prevention and control of regional air pollution in the regions is needed for further improving the air quality. The results provide a reference for controlling air pollution caused by rapid economic development in developing countries.


2019 ◽  
Author(s):  
Dongsheng Ji ◽  
Wenkang Gao ◽  
Willy Maenhaut ◽  
Jun He ◽  
Zhe Wang ◽  
...  

Abstract. As major chemical components of airborne fine particulate matter (PM2.5), organic carbon (OC) and elemental carbon (EC) have vital impacts on air quality, climate change, and human health. Because OC and EC are closely associated with fuel combustion, it is helpful for the scientific community and policymakers assessing the efficacy of air pollution control measures to study on the impact of the control measures and regional transport on the OC and EC levels. In this study, hourly mass concentrations of OC and EC associated with PM2.5 were semi-continuously measured from March 2013 to February 2018. The results showed that annual mean OC and EC concentrations declined from 14.0 to 7.7 μg/m3 and from 4.0 to 2.6 μg/m3, respectively, from March 2013 to February 2018. In combination with the data of OC and EC in previous studies, an obvious decreasing trend in OC and EC concentrations was found, which was caused by clean energy policies and effective air pollution control measures. However, no obvious change in the ratios of OC and EC to the PM2.5 mass (on average, 0.164 and 0.049, respectively) was recorded, suggesting that inorganic ions still contributed a lot to PM2.5. Based on the seasonal variations of OC and EC, it appeared that higher OC and EC concentrations were still observed in the winter months, with the exception of winter of 2017–2018. Traffic policies executed in Beijing resulted in nighttime peaks of OC and EC, caused by heavy-duty vehicles and heavy-duty diesel vehicles being permitted to operate from 0:00 to 6:00. In addition, the fact that there was no traffic restriction in weekends led to higher concentrations in weekends compared to weekdays. Significant correlations between OC and EC were observed throughout the study period, suggesting that OC and EC originated from common emission sources, such as exhaust of vehicles and fuel combustion. OC and EC levels increased with enhanced SO2, CO and NOx concentrations while the O3 and OC levels enhanced simultaneously when O3 concentrations were higher than 50 μg/m3. Nonparametric wind regression analysis was performed to examine the sources of OC and EC in the Beijing area. It was found that there were distinct hot spots in the northeast wind sector at wind speeds of approximately 5 km/h, as well as diffuse signals in the southwestern wind sectors, highlighting probable trans-boundary transport from highly industrialized regions upwind of the Hebei province, such as Baoding, Shijiazhuang and Handan, which were the most polluted cities in China. This was consistent with their higher potential as source areas, as determined by the potential source contribution function (PSCF) analysis. A high-potential source area was precisely pinpointed, which was located in the northwestern and southern areas of Beijing in 2017 instead of solely in the southern areas of Beijing in 2013. This work shows that improvement of the air quality in Beijing benefits from strict control measures; however, joint prevention and control of regional air pollution in the regions is needed for further improving the air quality. The results provide a reference for controlling air pollution caused by rapid economic development in developing countries.


2011 ◽  
Vol 11 (9) ◽  
pp. 25991-26007 ◽  
Author(s):  
R. Makkonen ◽  
A. Asmi ◽  
V.-M. Kerminen ◽  
M. Boy ◽  
A. Arneth ◽  
...  

Abstract. The number of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The total aerosol forcing (−1.61 W m−2 in year 2000) is simulated to be greatly reduced in the future, to −0.23 W m−2, mainly due to decrease in SO2 emissions and resulting decrease in new particle formation. With the total aerosol forcing decreasing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.


2020 ◽  
pp. 0920203X2096823
Author(s):  
Gang Tian ◽  
Wen-Hsuan Tsai

Using the concept of ‘hedging’, we explore how local cadres in China deviate from central policies in order to serve local interests and, while doing so, avoid being called to account by their superiors. Political signals enable cadres to decide when to invest more resources into the implementation of certain policies. In this way, they optimize their performance and avoid the political risks involved in failing to carry out their designated tasks. This article uses county Y as an example in a discussion of county-level implementation of policies related to economic growth and air pollution control. We find that local cadres weaken the functions of the superior ‘special inspection team’ (专项督察组, hereafter inspection team), treating them as political instruments used by the central and local authorities to ensure a greater level of responsiveness at the grass roots. Information concerning the imminent arrival of an inspection team in their locality acts as a signal for cadres to allocate more resources to the enforcement of air pollution control measures, thus maximizing their performance in this area. Through this research, we have endeavoured to provide a deeper understanding of the operating logic of Chinese local governments and the behaviour of county cadres.


Author(s):  
Bowen Jiang ◽  
Yuangang Li ◽  
Weixin Yang

At present, China’s air pollution and its treatment effect are issues of general concern in the academic circles. Based on the analysis of the development stages of air pollution in China and the development history of China’s air quality standards, we selected 17 cities of Shandong Province, China as the research objects. By expanding China’s existing Air Quality Index System, the air quality of six major pollutants including PM2.5 and PM10 in 17 cities from February 2017 to January 2020 is comprehensively evaluated. Then, with a forecast model, the air quality of the above cities in the absence of air pollution control policies since June 2018 was simulated. The results of the error test show that the model has a maximum error of 4.67% when simulating monthly assessment scores, and the maximum mean error of the four months is 3.17%. Through the comparison between the simulation results and the real evaluation results of air quality, we found that since June 2018, the air pollution control policies of six cities have achieved more than 10% improvement, while the air quality of the other 11 cities declined. The different characteristics of pollutants and the implementation of governance policies are perhaps the main reasons for the above differences. Finally, policy recommendations for the future air pollution control in Shandong and China were provided.


Sign in / Sign up

Export Citation Format

Share Document