INUNDATION IMPACTS DUE TO SEA LEVEL RISE AND THE ADAPTATION ASSESSMENTS FOR COASTAL PROTECTION

Author(s):  
Koujiro TSUCHIDA ◽  
Makoto TAMURA ◽  
Naoko KUMANO ◽  
Hiromune YOKOKI
2020 ◽  
Author(s):  
Rosanne Martyr-Koller ◽  
Tabea Lissner ◽  
Carl-Friedrich Schleussner

<p>Climate impacts increase with higher warming and evidence is mounting that impacts increase strongly above 1.5°C. Therefore, adaptation needs also rise substantially at higher warming levels. Further<strong>, </strong>limits to adaptation will be reached above 1.5°C and loss and damage will be inferred. Coastal Nature-based Solutions (NbS) have arisen as popular adaptation options, particularly for coastal developing economies and Small Island Developing States (SIDS), because of their lower overall costs compared to traditional grey infrastructure approaches such as seawalls and levees; their economic co-benefits through positive effects on sectors such as tourism and fisheries; and a broader desire to shift toward so-called blue economies. Two NbS of particular interest for coastal protection are: 1) coral reefs, which reduce coastal erosion and flooding through wave attenuation; and 2) mangroves, which provide protection from storms, tsunamis and coastal erosion. Although there is international enthusiasm to implement these solutions, there is limited understanding of the future viability of these ecosystems, particularly in their capacities as coastal adaptation service providers, in a warmer world.</p><p>In this presentation, we highlight how long and with how much coverage coral and mangrove ecosystems can provide coastal protection services for future climate scenarios, using air temperature and sea level rise as climate change indicators. A mathematical model for each ecosystem is developed, based on the physical parameters necessary for the sustainability of these ecosystems. We investigate the protective capabilities of each ecosystem under warming and sea level rise scenarios compatible with: below 1.5°C warming; below 2°C warming; warming based on current global commitments to carbon emissions reductions (3-3.5°C); and with no carbon mitigation (6°C). Results show what temperature and sea level rise values beyond which these ecosystems can no longer provide coastal protective services. These results have also been framed in a temporal window to show when these services may not be feasible, beyond which more costly adaptation measures and/or loss and damage may be incurred.</p>


2017 ◽  
Vol 17 (3) ◽  
pp. 449-466 ◽  
Author(s):  
Isavela N. Monioudi ◽  
Adonis F. Velegrakis ◽  
Antonis E. Chatzipavlis ◽  
Anastasios Rigos ◽  
Theophanis Karambas ◽  
...  

Abstract. The present contribution constitutes the first comprehensive attempt to (a) record the spatial characteristics of the beaches of the Aegean archipelago (Greece), a critical resource for both the local and national economy, and (b) provide a rapid assessment of the impacts of the long-term and episodic sea level rise (SLR) under different scenarios. Spatial information and other attributes (e.g., presence of coastal protection works and backshore development) of the beaches of the 58 largest islands of the archipelago were obtained on the basis of remote-sensed images available on the web. Ranges of SLR-induced beach retreats under different morphological, sedimentological and hydrodynamic forcing, and SLR scenarios were estimated using suitable ensembles of cross-shore (1-D) morphodynamic models. These ranges, combined with empirically derived estimations of wave run-up induced flooding, were then compared with the recorded maximum beach widths to provide ranges of retreat/erosion and flooding at the archipelago scale. The spatial information shows that the Aegean pocket beaches may be particularly vulnerable to mean sea level rise (MSLR) and episodic SLRs due to (i) their narrow widths (about 59 % of the beaches have maximum widths < 20 m), (ii) their limited terrestrial sediment supply, (iii) the substantial coastal development and (iv) the limited existing coastal protection. Modeling results indeed project severe impacts under mean and episodic SLRs, which by 2100 could be devastating. For example, under MSLR of 0.5 m – representative concentration pathway (RCP) 4.5 of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate change (IPCC) – a storm-induced sea level rise of 0.6 m is projected to result in a complete erosion of between 31 and 88 % of all beaches (29–87 % of beaches are currently fronting coastal infrastructure and assets), at least temporarily. Our results suggest a very considerable risk which will require significant effort, financial resources and policies/regulation in order to protect/maintain the critical economic resource of the Aegean archipelago.


2021 ◽  
Author(s):  
Cindy Palinkas ◽  
Lorie Staver

&lt;p&gt;Living shorelines, defined in this study as narrow marsh fringes with adjacent sills, have been gaining traction as the preferred management strategy to mitigate shoreline erosion. These nature-based features provide the same ecosystem services as natural marshes while protecting coastlines. However, they also are threatened by the same environmental changes (sea-level rise, changing sediment supply) as natural marshes and may change characteristics of adjacent subtidal sediments. This study evaluates the role of plants in both the created marshes of living shorelines and, where present, beds of submersed aquatic vegetation (SAV) in the adjacent subtidal in the effectiveness, impacts, and resiliency of living shorelines over ~10 years in mesohaline Chesapeake Bay. At study sites, there is a net seaward movement of shorelines with living shoreline installation due to construction technique. This movement replaces shallow-water habitat immediately adjacent to the pre-existing shoreline; farther offshore, sedimentological changes vary among sites but do not appear to drive changes in the presence/absence of subtidal SAV. While current accretion rates in the created marshes are greater than local relative sea-level rise, there is evidence that accretion rates increase with marsh age, suggesting that living shorelines are most vulnerable in the first few years after installation. Because nutrient burial is maximized when SAV occur next to living shorelines, a management strategy that considers the subtidal and intertidal as integrated components of the coastal system is needed to optimize co-benefits of coastal protection.&lt;/p&gt;


Author(s):  
Isavela N. Monioudi ◽  
Adonis F. Velegrakis ◽  
Antonis E. Chatzipavlis ◽  
Anastasios Rigos ◽  
Theophanis Karambas ◽  
...  

Abstract. The present contribution constitutes the first comprehensive attempt to (a) record the spatial characteristics of the beaches of the Aegean Archipelago (Greece), a critical resource for both the local and national economy; and (b) provide a rapid assessment of the impacts of the long-term and episodic sea level rise (SLR), under different scenarios. Spatial information and other attributes (e.g. presence of coastal protection works and backshore development) of the beaches of the 58 largest islands of the Archipelago were obtained on the basis of remote-sensed images available in the web. Ranges of SLR-induced beach retreats under different morphological, sedimentological and hydrodynamic forcing and SLR scenarios were estimated, using suitable ensembles of cross-shore (1-D) morphodynamic models. These ranges, combined with empirically-derived estimations of wave run up-induced flooding, were then compared with the recorded maximum beach widths, to provide ranges of retreat/erosion and flooding at the Archipelago scale. The spatial information shows that the Aegean beaches may be particularly vulnerable to mean (MSLR) and episodic SLRs due to: (i) their narrow widths (about 59 % of the beaches have maximum widths


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Arne Arns ◽  
Sönke Dangendorf ◽  
Jürgen Jensen ◽  
Stefan Talke ◽  
Jens Bender ◽  
...  

2021 ◽  
Vol 41 (4) ◽  
Author(s):  
Patrick Boyden ◽  
Elisa Casella ◽  
Christopher Daly ◽  
Alessio Rovere

AbstractSea-level rise represents a severe hazard for populations living within low-elevation coastal zones and is already largely affecting coastal communities worldwide. As sea level continues to rise following unabated greenhouse gas emissions, the exposure of coastal communities to inundation and erosion will increase exponentially. These impacts will be further magnified under extreme storm conditions. In this paper, we focus on one of the most valuable coastal real estate markets globally (Palm Beach, FL). We use XBeach, an open-source hydro and morphodynamic model, to assess the impact of a major tropical cyclone (Hurricane Matthew, 2016) under three different sea-level scenarios. The first scenario (modern sea level) serves as a baseline against which other model runs are evaluated. The other two runs use different 2100 sea-level projections, localized to the study site: (i) IPCC RCP 8.5 (0.83 m by 2100) and (ii) same as (i), but including enhanced Antarctic ice loss (1.62 m by 2100). Our results show that the effective doubling of future sea level under heightened Antarctic ice loss amplifies flow velocity and wave height, leading to a 46% increase in eroded beach volume and the overtopping of coastal protection structures. This further exacerbates the vulnerability of coastal properties on the island, leading to significant increases in parcel inundation.


Author(s):  
Amin Ilia

Connecticut marshes, like other marshes in the world, are vulnerable to anthropogenic and climate change effects. However, assessment of current sea level rise and average marsh accretion rates in Connecticut demonstrate sea level rise is not the main vulnerable factor for salt marshes loss. The study on the feasibility of developing an ecosystem-based on two coastlines in Connecticut, Guilford and Stratford, shows that both coastlines, like other coastlines in Connecticut, have limited wave energy, which is a positive factor for marsh growth. The available data assessment represents that sediment supply is the most important parameter to guarantee the resilience and sustainability of a newly developed salt marsh system in Connecticut. In Stratford, conditions for establishing a new ecosystem seem to be better, as the fetch length is pretty small, and there is some sediment supply for the ecosystem. In Guilford, wave energy is limited, but it is more than in Stratford case. Besides, sediment availability is low and the coastline experienced considerable erosion during hurricane Sandy and has not recovered yet.


Sign in / Sign up

Export Citation Format

Share Document