PROPOSAL OF DESIGN METHOD FOR COLLAPSE SCENARIO DESIGN OF ROAD BRIDGE BY CONTROLLING FAILURE LIKELIHOOD

Author(s):  
Michio OHSUMI ◽  
Hisashi NAKAO ◽  
Satoshi ISHIZAKI ◽  
Gaku SHOJI
2015 ◽  
Vol 28 (8) ◽  
pp. 3232-3249 ◽  
Author(s):  
Patrick Grenier ◽  
Ramón de Elía ◽  
Diane Chaumont

Abstract The path toward a warmer global climate is not smooth, but, rather, is made up of a succession of positive and negative temperature trends, with cooling having more chance to occur the shorter the time scale considered. In this paper, estimates of the probabilities of short-term cooling (Pcool) during the period 2006–35 are performed for 5146 locations across Canada. Probabilities of cooling over durations from 5 to 25 yr come from an ensemble of 60 climate scenarios, based on three different methods using a gridded observational product and CMIP5 climate simulations. These methods treat interannual variability differently, and an analysis in hindcast mode suggests they are relatively reliable. Unsurprisingly, longer durations imply smaller Pcool values; in the case of annual temperatures, the interdecile range of Pcool values across Canada is, for example, ~2%–18% for 25 yr and ~40%–46% for 5 yr. Results vary slightly with the scenario design method, with similar geographical patterns emerging. With regards to seasonal influence, spring and winter are generally associated with higher Pcool values. Geographical Pcool patterns and their seasonality are explained in terms of the interannual variability over background trend ratio. This study emphasizes the importance of natural variability superimposed on anthropogenically forced long-term trends and the fact that regional and local short-term cooling trends are to be expected with nonnegligible probabilities.


2005 ◽  
Author(s):  
Michael Szczepkowski ◽  
Kelly Neville ◽  
Ed Popp
Keyword(s):  

2018 ◽  
Vol 1 (2) ◽  
pp. 1-17
Author(s):  
Tedi Budiman

One example of the growing information technology today is mobile learning, mobile learning which refers to mobile technology as a learning medium. Mobile learning is learning that is unique for each student to access learning materials anywhere, anytime. Mobile learning is suitable as a model of learning for the students to make it easier to get an understanding of a given subject, such as math is pretty complicated and always using formulas.The design method that I use is the case study method, namely, learning, searching and collecting data related to the study. While the development of engineering design software application programs that will be used by the author is the method of Rapid Application Development (RAD), which consists of 4 stages: Requirements Planning Phase, User Design Phase, Construction Phase and Phase Cotuver.


Sign in / Sign up

Export Citation Format

Share Document