STATISTICAL PREDICTION OF TIME SERIES OF WIND SPEED AND WAVE HEIGHT BY CONVOLUTIONAL NEURAL NETWORK

Author(s):  
Yuji ARAKI ◽  
Nobuhito MORI ◽  
Tomohiro YASUDA
2021 ◽  
Vol 11 (14) ◽  
pp. 6594
Author(s):  
Yu-Chia Hsu

The interdisciplinary nature of sports and the presence of various systemic and non-systemic factors introduce challenges in predicting sports match outcomes using a single disciplinary approach. In contrast to previous studies that use sports performance metrics and statistical models, this study is the first to apply a deep learning approach in financial time series modeling to predict sports match outcomes. The proposed approach has two main components: a convolutional neural network (CNN) classifier for implicit pattern recognition and a logistic regression model for match outcome judgment. First, the raw data used in the prediction are derived from the betting market odds and actual scores of each game, which are transformed into sports candlesticks. Second, CNN is used to classify the candlesticks time series on a graphical basis. To this end, the original 1D time series are encoded into 2D matrix images using Gramian angular field and are then fed into the CNN classifier. In this way, the winning probability of each matchup team can be derived based on historically implied behavioral patterns. Third, to further consider the differences between strong and weak teams, the CNN classifier adjusts the probability of winning the match by using the logistic regression model and then makes a final judgment regarding the match outcome. We empirically test this approach using 18,944 National Football League game data spanning 32 years and find that using the individual historical data of each team in the CNN classifier for pattern recognition is better than using the data of all teams. The CNN in conjunction with the logistic regression judgment model outperforms the CNN in conjunction with SVM, Naïve Bayes, Adaboost, J48, and random forest, and its accuracy surpasses that of betting market prediction.


2021 ◽  
Author(s):  
Wenjie Cao ◽  
Cheng Zhang ◽  
Zhenzhen Xiong ◽  
Ting Wang ◽  
Junchao Chen ◽  
...  

2018 ◽  
Vol 7 (11) ◽  
pp. 418 ◽  
Author(s):  
Tian Jiang ◽  
Xiangnan Liu ◽  
Ling Wu

Accurate and timely information about rice planting areas is essential for crop yield estimation, global climate change and agricultural resource management. In this study, we present a novel pixel-level classification approach that uses convolutional neural network (CNN) model to extract the features of enhanced vegetation index (EVI) time series curve for classification. The goal is to explore the practicability of deep learning techniques for rice recognition in complex landscape regions, where rice is easily confused with the surroundings, by using mid-resolution remote sensing images. A transfer learning strategy is utilized to fine tune a pre-trained CNN model and obtain the temporal features of the EVI curve. Support vector machine (SVM), a traditional machine learning approach, is also implemented in the experiment. Finally, we evaluate the accuracy of the two models. Results show that our model performs better than SVM, with the overall accuracies being 93.60% and 91.05%, respectively. Therefore, this technique is appropriate for estimating rice planting areas in southern China on the basis of a pre-trained CNN model by using time series data. And more opportunity and potential can be found for crop classification by remote sensing and deep learning technique in the future study.


Author(s):  
Bohao Li ◽  
Liping Zhao ◽  
Yiyong Yao

Failure time prognosis in manufacturing process plays a crucial role in guaranteeing manufacturing safety and reducing maintenance loss. However, most current prognosis methods face great difficulty when handling massive data collected from manufacturing process. Convolutional neural network (CNN) provides an effective way to extract features with massive data. Due to the difference between images and multisensory signals, CNN is not suitable for machining process. Inspired by the idea of CNN, a novel prognosis framework is proposed based on the characteristics of multisensory signals, which is called multi-dislocated time series convolutional neural network (MDTSCNN). The proposed MDTSCNN is composed of multi-dislocate layer, convolutional layer, pooling layer and fully connected layer. By adding a multi-dislocate layer, this model can learn the relationship between different signals and different intervals in periodic multisensory signals. The effectiveness of proposed method is validated by a milling process. Compared to other prognosis method, the proposed MDTSCNN shows enhanced performances in prediction accuracy.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2097 ◽  
Author(s):  
Chenhua Ni ◽  
Xiandong Ma

Successful development of a marine wave energy converter (WEC) relies strongly on the development of the power generation device, which needs to be efficient and cost-effective. An innovative multi-input approach based on the Convolutional Neural Network (CNN) is investigated to predict the power generation of a WEC system using a double-buoy oscillating body device (OBD). The results from the experimental data show that the proposed multi-input CNN performs much better at predicting results compared with the conventional artificial network and regression models. Through the power generation analysis of this double-buoy OBD, it shows that the power output has a positive correlation with the wave height when it is higher than 0.2 m, which becomes even stronger if the wave height is higher than 0.6 m. Furthermore, the proposed approach associated with the CNN algorithm in this study can potentially detect the changes that could be due to presence of anomalies and therefore be used for condition monitoring and fault diagnosis of marine energy converters. The results are also able to facilitate controlling of the electricity balance among energy conversion, wave power produced and storage.


Sign in / Sign up

Export Citation Format

Share Document