Digital Image Editing Using PowerPoint: Part 1, Introduction to the Image-Manipulation Commands

2004 ◽  
Vol 183 (3) ◽  
pp. 847-851 ◽  
Author(s):  
Omar Lababede
2020 ◽  
pp. 136787792097665
Author(s):  
Joshua D. Miner

Indigenous photobomb memes emerged on social networks as a media practice alongside contemporary activist campaigns, where artists insert pop culture content into digitized ethnographic photographs already in use as mainstream meme fodder. This article takes a materialist approach to such memes to explore how the technical processes of digital image editing function ideologically. Meme series by Kiowa-Choctaw artist Steven Paul Judd and others illustrate how compositing methods like cloning and healing tools may disrupt ethnographic photographs’ claims to history, interrogating the aesthetic systems that underwrite settler-colonial media. As these algorithmic processes remediate the digitized image and re-situate it relative to other photoshopping practices, they bear a trace of settler digitality that allows such memes to intervene in current cultural debates and aesthetic trends. Circulation via social media generates a web of twice-remediated memes, which always refer back to their prior analog and digital iterations.


Author(s):  
Lemcia Hutajulu ◽  
Hery Sunandar ◽  
Imam Saputra

Cryptography is used to protect the contents of information from anyone except those who have the authority or secret key to open information that has been encoded. Along with the development of technology and computers, the increase in computer crime has also increased, especially in image manipulation. There are many ways that people use to manipulate images that have a detrimental effect on others. The originality of a digital image is the authenticity of the image in terms of colors, shapes, objects and information without the slightest change from the other party. Nowadays many digital images circulating on the internet have been manipulated and even images have been used for material fraud in the competition, so we need a method that can detect the image is genuine or fake. In this study, the authors used the MD4 and SHA-384 methods to detect the originality of digital images, by using this method an image of doubtful authenticity can be found out that the image is authentic or fake.Keywords: Originality, Image, MD4 and SHA-384


2008 ◽  
Vol 16 (4) ◽  
pp. 62-63
Author(s):  
V.M. Dusevich ◽  
J.H. Purk ◽  
J.D. Eick

Coloring pictures is an educational exercise, which is fun, and helps develop important skills. Coloring SEM micrographs is especially suitable for electron microscopists. Color micrographs are not just great looking on a lab wall; they inspire both microscopists and students to exercise digital picture manipulation. Many microscopists enjoyed looking at the beautiful color micrographs by D. Scharf, but were frustrated to learn they needed a very particular scanning electron microscope equipped with multiple secondary electron detectors in order to color their own pictures. Fortunately, there are other ways to color SEM micrographs. Most SEMs are equipped with at least two detectors, for secondary and backscattered electrons.


Author(s):  
Shashidhar T. M. ◽  
K. B. Ramesh

Digital Image Forensic is significantly becoming popular owing to the increasing usage of the images as a media of information propagation. However, owing to the presence of various image editing tools and softwares, there is also an increasing threats over image content security. Reviewing the existing approaches of identify the traces or artifacts states that there is a large scope of optimization to be implmentation to further enhance teh processing. Therfore, this paper presents a novel framework that performs cost effective optmization of digital forensic tehnqiue with an idea of accurately localizing teh area of tampering as well as offers a capability to mitigate the attacks of various form. The study outcome shows that propsoed system offers better outcome in contrast to existing system to a significant scale to prove that minor novelty in design attribute could induce better improvement with respect to accuracy as well as resilience toward all potential image threats.


Radiographics ◽  
2003 ◽  
Vol 23 (5) ◽  
pp. 1338-1340
Author(s):  
Omar Lababede

Radiographics ◽  
2002 ◽  
Vol 22 (4) ◽  
pp. 981-992 ◽  
Author(s):  
Frank M. Corl ◽  
Melissa R. Garland ◽  
Leo P. Lawler ◽  
Elliot K. Fishman

Author(s):  
C. Richard Johnson Jr. ◽  
William Sethares ◽  
Margaret Holben Ellis

Identifying, comparing, and matching watermarks in pre-machine-made papers has occupied scholars of prints and drawings for some time. One popular but arduous approach is to overlay, either manually or digitally, an image of the watermark in question with its presumed match from a known source. For example, a newly discovered watermark in a Rembrandt print might be compared to a similar one reproduced in Erik Hinterding’s Rembrandt as an Etcher (2006). Such an overlay can confirm the pair as identical, i.e., as moldmates, or reveal their differences. But creating an accurate overlay for two images with different scales, orientations, or resolutions using standard image-manipulation tools can be time consuming and, ultimately, unsuccessful. Part One of this article describes advances in the emerging field of computational art history, specifically the development of digital image processing software, that can be used to semi-automatically create a reliable animated overlay of two watermarks, regardless of their relative “comparability.” Watermarks found in the prints of Rembrandt van Rijn (1606–1669) are used in three case studies to demonstrate the efficacy of user-generated overlay videos. Part Two discusses how searching for identical watermarks, i.e., moldmates, can be enhanced through the application of a new suite of software programs that exploit the data calculated during the creation of user-generated animated overlays. This novel watermark identification procedure allows for rapid, confident watermark searches with minimal user effort, given the existence of a pre-marked library of watermarks. Using a pre-marked library of Foolscap with Five-Pointed Collar watermarks, four case studies present different categories of previously undocumented matches 1) among Rembrandt’s prints; 2) between prints by Rembrandt and another artist, in this case Jan Gillisz van Vliet (1600/10–1668); and 3) between selected Rembrandt prints and contemporaneous Dutch historical documents.


2021 ◽  
Vol 10 (6) ◽  
pp. 3147-3155
Author(s):  
Vikas Srivastava ◽  
Sanjay Kumar Yadav

Sharing information through images is a trend nowadays. Advancements in the technology and user-friendly image editing tool make easy to edit the image and spread fake news through different social networking platforms. Forged image has been generated through an advanced image editing tool, so it is very challenging for image forensics to detect the micro discrepancy which distorted the micro pattern. This paper proposes an image forensic detection technique, which implies multi-level discrete wavelet transform to implement digital image filtering. Canny edge detection technique is implemented to detect the edge of the image to implement Otsu’s based enhanced local ternary pattern (OELTP), which can detect forgery-related artifact. DWT is implemented over Cb and Cr components of the image and using edge texture to improve the Otsu global threshold, which is used to extract features using ELTP technique. Support vector machine (SVM) is used for classification to find the image is forged or not. The performance of the work evaluated on three different open available data sets CASIA v1, CASIA v2, and Columbia. Our proposed work gives better results with some of the previous states of the work in terms of detection accuracy.


Sign in / Sign up

Export Citation Format

Share Document