scholarly journals SYNTHESIS OF THIN FILM OF TiO2 ON GRAPHITE SUBSTRATE BY CHEMICAL BATH DEPOSITION

2010 ◽  
Vol 6 (2) ◽  
pp. 121-126 ◽  
Author(s):  
Fitria Rahmawati ◽  
Sayekti Wahyuningsih ◽  
Pamularsih A.W

Thin film of TiO2 on graphite substrat has been prepared by means of chemical bath deposition. Cetyltrimethylammonium Bromide served  as linking agent of synthesized TiO2 to graphite substrate.The optical microscope and Scanning Electron Microscope (SEM) indicate that surfactant concentration affects the pore morphology of thin film Surface Area Analysis (SAA) of thin film indicated that the pore of thin film included in mesopore category. The anatase phase of TiO2 quantity arised as the surfactant concentration increase, gave high efficiency of induced photon conversion to current efficiency (% IPCE).   Keywords: thin film, TiO2, deposition, graphite

Author(s):  
M. A. Tit ◽  
S. N. Belyaev

This article considers the research results of the effect of stoichiometry on the properties of titanium nitride thin-film coatings of the float and electrostatic gyroscopes. It presents the results of tests of such mechanical and optical characteristics of titanium nitride thin-film structures as microhardness, resistance to wear and friction, and image contrast determined by the reflection coefficients of a titanium nitride base surface and a raster pattern formed by local laser oxidation. When making a rotor of a cryogenic gyroscope, the prospects of use and technological methods for the formation of functional surface structures of niobium carbide and nitride are considered. It is shown that during the formation of coatings of the required composition, the most important is the thermodynamic estimation of possible interactions. These interactions allow us to accomplish the structural-phase modification of the material, which is determined by the complex of possible topochemical reactions leading to the formation of compounds, including non-stoichiometric composition.


2016 ◽  
Vol 361 ◽  
pp. 269-276 ◽  
Author(s):  
Young-Sang Park ◽  
Hyeong-Guk Son ◽  
Dae-Hoon Kim ◽  
Hong-Gi Oh ◽  
Da-Som Lee ◽  
...  

Author(s):  
A. Andreone ◽  
C. Attanasio ◽  
A. Di Chiara ◽  
L. Maritato ◽  
A. Nigro ◽  
...  

10.14311/1767 ◽  
2013 ◽  
Vol 53 (2) ◽  
Author(s):  
Jan Píchal ◽  
Julia Klenko

Thin film technology has become pervasive in many applications in recent years, but it remains difficult to select the best deposition technique. A further consideration is that, due to ecological demands, we are forced to search for environmentally benign methods. One such method might be the application of cold plasmas, and there has already been a rapid growth in studies of cold plasma techniques. Plasma technologies operating at atmospheric pressure have been attracting increasing attention. The easiest way to obtain low temperature plasma at atmospheric pressure seems to be through atmospheric dielectric barrier discharge (ADBD). We used the plasma enhanced chemical vapour deposition (PECVD) method applying atmospheric dielectric barrier discharge (ADBD) plasmafor TiOx thin films deposition, employing titanium isopropoxide (TTIP) and oxygen as reactants, and argon as a working gas. ADBD was operated in filamentary mode. The films were deposited on glass. We studied the quality of the deposited TiOx thin film surface for various precursor gas inlet positions in the ADBD reactor. The best thin films quality was achieved when the precursor gases were brought close to the substrate surface directly through the inlet placed in one of the electrodes.High hydrophilicity of the samples was proved by contact angle tests (CA). The film morphology was tested by atomic force microscopy (AFM). The thickness of the thin films varied in the range of (80 ÷ 210) nm in dependence on the composition of the reactor atmosphere. XPS analyses indicate that composition of the films is more like the composition of TiOxCy.


2004 ◽  
Vol 820 ◽  
Author(s):  
F. Fixe ◽  
H.M. Branz ◽  
D.M.F. Prazeres ◽  
V. Chu ◽  
J.P. Conde

AbstractSingle square voltage pulses were used to enhance by 7 and 9 orders of magnitude the rate of covalent immobilization and hybridization, respectively, of single stranded DNA probes on a chemically functionalized thin film surface (silicon dioxide) using 2 mm size electrodes. These electrodes were scaled down to 20 μm. Photolithography was used to define the electrode voltage line, ground line, and functionalized thin-film area on a plastic substrate (polyimide). At all electrode dimensions, electric field-assisted DNA immobilization and hybridization can be achieved in the microsecond time scale, far faster than the 2 hr or 16 hr needed for immobilization and hybridization, respectively, without the electric field. Pulse conditions optimized with the large-size electrodes (2 mm) were used in the microelectrodes.


Vacuum ◽  
2007 ◽  
Vol 82 (2) ◽  
pp. 154-157 ◽  
Author(s):  
M. Marton ◽  
T. Ižák ◽  
M. Veselý ◽  
M. Vojs ◽  
M. Michalka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document