scholarly journals Enhancing the Performances of Polymeric PVDF Membranes for Oil/Water Separation by Hydrophilic and Underwater Oleophobic Surfaces Modification

2020 ◽  
Vol 20 (3) ◽  
pp. 545
Author(s):  
Faraziehan Senusi ◽  
Benjamin Ballinger ◽  
Suzylawati Ismail

This paper investigates the permeability and separation performance of polyphenolic-amine coated PVDF membrane with hydrophilic (26.9 ± 5.6°) and underwater oleophobic (162.1 ± 5.1°) surface modification. Surface chemical structures, surface compositions and hydrophilicity of membranes were investigated by Attenuated Total Reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and contact angle analyses, respectively. The separation of emulsion oil solutions was evaluated using cross-flow filtration mode in term of high permeation flux and excellent oil resistance. Then, the flux recovery ratio of filtration process was calculated at different transmembrane pressures (TMP) and initial concentrations of emulsion feed solutions. The results showed a decrease in the flux recovery ratio at higher pressures and initial oil concentrations. By applying Hermia’s blocking model, formation of cake layer shows dominant fouling mechanism for the emulsion oil separation process.

2015 ◽  
Vol 1745 ◽  
Author(s):  
HaoRan Liu ◽  
BoKang Jia ◽  
GuanQiu Li ◽  
Sumaya Nooralla ◽  
TieJun Zhang

ABSTRACTAdvanced materials with desired wettability are extremely important for environmental sustainability, such as oily industrial wastewater treatment and oil spill cleanup. To meet this demand, a scalable nanoengineering approach was developed to fabricate superhydrophilic and underwater superoleophobic inorganic meshes for cross-flow filtration and oil/water separation. The resulting nanostructured copper meshes exhibit superhydrophilicity and underwater superoleophobicity (oil contact angle approaching to 159°). With these meshes, very high values of filtration flux (≥900,000 Lh-1m-2) have been achieved, with ultra-low oil residue in the filtrate (<40 ppm) and long water retention time (more than 1 h). The proposed nanoengineering method paves the way for effective gravity-driven separation of immiscible oil/water mixtures, especially for low-density oil purification.


2011 ◽  
Vol 102 (24) ◽  
pp. 11121-11131 ◽  
Author(s):  
Hanmin Zhang ◽  
Jifeng Gao ◽  
Tao Jiang ◽  
Dawen Gao ◽  
Shurong Zhang ◽  
...  

1992 ◽  
Vol 25 (10) ◽  
pp. 319-327 ◽  
Author(s):  
P. D. Rose ◽  
B. A. Maart ◽  
T. D. Phillips ◽  
S. L. Tucker ◽  
A. K. Cowan ◽  
...  

An algal high rate oxidation ponding process for treating organic s present in saline effluents has been described. The extreme halophile Dunaliella salina can be made to predominate in the system by manipulating salinity, producing products of value together with a waste treatment function. Application in treating tannery saline organic wastes was examined. Techniques appropriate for the harvesting of micro-algae from this and other algal production systems presents a limiting factor in the development of algal biotechnology. Cross-flow filtration was evaluated as a technique for micro-algal cell separation. Both microfiltration and ultrafiltration were found to produce effective algal removal from the medium, Cross-flow ultrafiltration with a polyethersulfone coated tubular filter produced effective separation with the production of cell concentrates in a viable condition. Flux rates of 30 - 40 LMH fall within acceptable levels for application in industrial processes. Cell shattering observed with microfiltration precludes its use for recovering whole or viable cell concentrates.


1991 ◽  
Vol 37 (3) ◽  
pp. 215-222 ◽  
Author(s):  
Kazuaki Yamagiwa ◽  
Yoshikazu Ohmae ◽  
M. Hatta Dahlan ◽  
Akira Ohkawa

2001 ◽  
Vol 1 (5-6) ◽  
pp. 387-392 ◽  
Author(s):  
G.T. Seo ◽  
T.S. Lee ◽  
B.H. Moon ◽  
J.H. Lim

Ozone was incorporated into an ultrafiltration system to produce higher quality reclaimed water from domestic laundry wastewater. Characteristics of the wastewater for initial washing waste were 488~2,847 mg/L COD, 62~674 mg/L MBAS, and 38~857 mg/L SS. The wastewater was contacted with ozone in a 10L storage tank and circulated through the membrane module for inner pressurized cross-flow filtration. The concentrate was returned back to the contact tank. The membrane used in this experiment was hollow fiber polysulfone UF membrane with MWCO 5,000 and 10,000. It has an effective filtration area of 0.06m2. The experiment was carried out in two phases with either continuous or intermittent ozone injection. For intermittent ozone injection, the mode of injection interval was changed to 5 min./5 min. and 5 min./10 min. for injection/idling. Ozone was dosed at the concentration of 1.5 mg/L. The permeate quality of UF (MWCO 5,000) was 57 mg/L as COD and 5 mg/L as MBAS at continuous ozone injection with removal of 95% in COD and 96.9% in MBAS. Using UF with MWCO 10,000, it was 93.7% and 95.5% of COD and MBAS, respectively. And using intermittent ozone injection, the removal efficiency was 93% in COD and 93.5% in MBAS without any deterioration in COD and MBAS removal. It could reduce the treatment cost. Using ozone injection, fouling of the membrane was also controlled by increasing organic degradation. The flux of UF (MWCO 5,000 and 10,000) was 0.13 and 0.20 m/d for 3 hour filtration (TMP 40≈45 kPa) without ozone injection. It was increased to 0.18 and 0.24m/d by ozone injection. The reclaimed water quality could be estimated well enough to reuse for rinsing purposes.


Sign in / Sign up

Export Citation Format

Share Document