scholarly journals Solubility and Partition Coefficient of Salicylamide in Various pH Buffer Solutions

2021 ◽  
Vol 21 (5) ◽  
pp. 1263
Author(s):  
Dewi Isadiartuti ◽  
Noorma Rosita ◽  
Esti Hendradi ◽  
Firdausiah Fania Dwi Putri Putri ◽  
Frida Magdalena

The solubility and partition coefficient are essential physicochemical parameters in developing a pharmaceutical dosage form of medicine. In addition, these parameters help to predict the absorption of an active compound in oral or topical dosage forms. Salicylamide, an active ingredient available in oral and topical dosage forms, is a weak acid (pKa 8.2) and is sparingly soluble in water. Meanwhile, its solubility and partition coefficients are influenced by the pH of the environment. The Henderson-Hasselbalch equation is used to predict solubility-pH and partition-pH profiles at various pH solutions. This study aims to determine salicylamide's solubility and partition coefficient in various pH (2–11). Both tests were carried out in various pH buffer solutions (at a concentration of 0.02 M and 0.2 ionic strength) in a water bath shaker at a temperature of 37 ± 0.5 °C. In addition, the salicylamide content was determined using the UV spectrophotometer method at the maximum wavelength at each pH. The results showed that the solubility increased at pH 2–10, while the partition coefficient value decreased. On the other hand, at pH 11, there was an increase in the number of ionized species, but the solubility decreased.

2020 ◽  
Vol 15 (4) ◽  
pp. 283-298
Author(s):  
Suresh Kumar Sahu ◽  
Rakesh Raj ◽  
Pooja Mongia Raj ◽  
Ram Alpana

Treatment of skin ailments through systemic administration is limited due to toxicity and patients discomfort. Hence, lower risk of systemic side effects from topical dosage forms like ointments, creams, emulsions and gels is more preferred for the treatment of skin disease. Application of lipid based carriers in drug delivery in topical formulations has recently become one of the major approaches to improve drug permeation, safety, and effectiveness. These delivery systems include liposomes, ethosomes, transfersomes, Nanoemulsions (NEs), Solid Lipid Nanoparticles (SLNs) Nanostructured Lipid Carriers (NLCs) and micelles. Most of the liposomes and SLNs based products are in the market while some are under investigation. Transcutaneous delivery of therapeutics to the skin layer by novel lipid based carriers has enhanced topical therapy for the treatment of skin ailments. This article covers an overview of the lipid-based carriers for topical uses to alleviate skin diseases.


2018 ◽  
Vol 1 (2) ◽  
pp. 49-58
Author(s):  
Shubhendra Jha ◽  
Sheo Datta Maurya

Semisolid preparations for external application to skin have gained much demand, since it is easily absorbed through the skin layers. Many novel topical dosage forms have been discovered, among which organogels appears to play an important role. Interest in organogels has increased in a wide variety of fields including chemistry, biotechnology and pharmaceutics. Organogels are thermodynamically stable, biocompatible, isotropic gel, which not only give localized effect, but also systemic effect through percutaneous absorption. Organogels are semi-solid systems, in which an organic liquid phase is immobilized by a three-dimensional network composed of self assembled, intertwined gelator fibers. The apolar phase gets immobilized within spaces of the three-dimensional networked structure formed due to the physical interactions amongst the self assembled structures of compounds regarded as gelators. Organogels have been explored as matrices for the delivery of bioactive agents. Compared to conventional topical dosage forms, these novel formulations are found to be more advantageous and efficient. In future, organogels can give way to many promising discoveries in the field of topical dosage forms. The current review aims at giving an idea about organogels, its applications and importance in topical delivery.


2019 ◽  
Vol 53 ◽  
pp. 101173 ◽  
Author(s):  
Jéssica Domingos da Silva ◽  
Márcio Vinícius Gomes ◽  
Lucio Mendes Cabral ◽  
Valeria Pereira de Sousa

2006 ◽  
Vol 40 (2) ◽  
pp. 322-330 ◽  
Author(s):  
Tue Søeborg ◽  
Steen Honoré Hansen ◽  
Bent Halling-Sørensen

2009 ◽  
Vol 63 (3) ◽  
Author(s):  
Zuzana Vitková ◽  
Jarmila Oremusová ◽  
Oľga Greksáková

AbstractThe paper describes results obtained within the study of factors affecting the process of an antifungal drug — terbinafine hydrochloride adsorption on two different adsorbents — charcoal and silicagel. The effects of the adsorbent area, pH value, temperature and additives (polymers — methyl cellulose and hydroxypropyl cellulose) were analyzed and their impact on the adsorption of terbinafine was derived. The increase of pH and temperature, and the presence of additives decreased the amount of terbinafine adsorbed on the adsorbents. Terbinafine is currently applied both perorally and topically. Hydrogels, i.e. compositions of a drug, additives and water, are, due to their advantageous properties, preferred topical dosage forms. Mass fraction of additives of 1 % to 4 % were studied from the view point of drug release. This study shows that both the sort and the concentration of polymers influence the drug release from hydrogels significantly.


2015 ◽  
Vol 41 (12) ◽  
pp. 2045-2054 ◽  
Author(s):  
Joe M. Viljoen ◽  
Amé Cowley ◽  
Jan du Preez ◽  
Minja Gerber ◽  
Jeanetta du Plessis

2018 ◽  
Vol 25 (2) ◽  
pp. 40-47 ◽  
Author(s):  
Rahman Gul ◽  
Syed Umer Jan ◽  
Mahmood Ahmad ◽  
Muhammad Mukhtiar

Sign in / Sign up

Export Citation Format

Share Document