scholarly journals Analisis Perbandingan Ketelitian Model 3D Menggunakan Lensa Normal dan Lensa Fisheye

Author(s):  
Adi Nurcahyo ◽  
Djurdjani Djurdjani

Dalam pemodelan 3D, salah satu metode yang umum digunakan adalah close range photogrammetry (CRP). Pada umumnya, metode CRP menggunakan lensa normal akibat distorsinya yang tidak terlalu besar. Lensa fisheye memiliki sudut pandang yang lebih besar dibandingkan lensa normal sehingga dapat mengurangi jumlah foto namun memiliki distorsi yang besar sehingga dapat mempengaruhi ketelitian model 3D yang dihasilkan. Penelitian ini bertujuan untuk melakukan pengujian ketelitian geometrik antara lensa normal dan lensa fisheye. Penelitian dilakukan di Kawasan Candi Ratu Boko. Data yang digunakan adalah foto objek candi, 10 titik GCP dan 10 titik ICP. Hasil model 3D lensa normal dan lensa fisheye sudah dapat memvisualisasikan objek dengan baik dari tingkat kedetilan dari struktur yang dihasilkan. Uji geometrik dilakukan dengan membandingkan jarak pada kedua model dengan jarak di lapangan serta ukuran ICP pada kedua model dengan ukuran ICP hasil akuisisi mengunakan total station reflectorless. Kedua uji tersebut menggunakan uji -t dengan tingkat kepercayaan 95%. Uji ketelitian jarak dan koordinat ICP menghasilkan t hitung < tabel sehingga dapat disimpulkan bahwa ketelitian model 3D lensa fisheye sama dengan ketelitian model 3D lensa normal. Lensa fisheye dapat menggantikan lensa normal untuk pemodelan 3D dalam kondisi lingkungan yang sempit dan terbatas. Distorsi lensa yang besar pada lensa fisheye tidak mempengaruhi ketelitian objek secara signifikan apabila dilakukan proses kalibrasi kamera.

2013 ◽  
Vol 353-356 ◽  
pp. 2795-2798
Author(s):  
Fei Dai ◽  
Wei Bing Peng

In comparison with existing sensor technologies such as laser scanning and total station, the surveying technique of photogrammetry holds the advantages of being safe, inexpensive, efficient, and ease-to-use. This paper presents the research efforts of applying close-range photogrammetry to model 3D construction graphics, measure geometric dimensions of building products, and visualize changes and progress of dynamic construction sites. The research results demonstrate the potential of the investigated technique in solving construction jobsite problems.


2014 ◽  
Vol 1073-1076 ◽  
pp. 1934-1940 ◽  
Author(s):  
Wei Dong Li ◽  
Nan Lin ◽  
Xu Chen

Combined with the experimental tunnel actual environment to select the appropriate control points as the logo, layout tunnel three dimensional modeling control network. using high-precision total station TM30 to control, measure and acquire image control points coordinate. in the following field collection imaging principle, the actual target of image acquisition, 3D modeling of tunnel based on the software platform of Lensphoto, the research results show that, the tunnel homonymous control point coordinates measured by Lensphoto three-dimensional model and using high-precision total station TM30 observations are of basic agreement, the error in the centimeter level, verified the feasibility of using digital close range photogrammetry in actual measurement of tunnel engineering,has the long-term guiding significance to the tunnel three-dimensional digital information collection and safety production.


2018 ◽  
Vol 63 ◽  
pp. 00013
Author(s):  
Tadeusz Widerski ◽  
Karol Daliga

The article presents a comparison of obtained models of a test object. Close range photogrammetry was used to obtain 3D models. As test object was used one of the rooms located in Wisłoujście Fortress in Gdańsk, Poland. Different models were obtained by using different distribution and number of reference points. Article contains analysis of differences between coordinates of control points obtained from total station measurements and estimated from different 3D models.


2019 ◽  
Vol 38 (1) ◽  
pp. 217-227
Author(s):  
Ahmad Shahrunnizam Ahmad Shazali ◽  
Khairul Nizam Tahar

Purpose The current technique used to measure construction is the conventional total station method. However, the conventional method is time-consuming and could not be used to create a photo-realistic three-dimensional (3D) model of an object. Furthermore, the Canseleri building is located at a slope. The paper aims to discuss this issue. Design/methodology/approach The aim of this study is to assess the geometric accuracy of a 3D model using unmanned aerial vehicle (UAV) images. There are two objectives in this study. The first is to construct a 3D model of the Canseleri building using UAV images. The second objective is to validate the 3D model of the Canseleri building based on actual measurements. Findings The close-range photogrammetry method, using the UAV platform, was able to produce a 3D building model. The results show that the errors between the actual measurement and the generated 3D model were less than 4 cm. The accuracy of the 3D model achieved in this study was about 0.015 m, compared to total station measurements. Originality/value Accuracy assessment was done by comparing the estimated measurement of the 3D model with the direct measurement. The differences between the measured values with actual values could be compared. Based on this study, the 3D building model gave a reliable accuracy for specific applications.


2011 ◽  
Vol 130-134 ◽  
pp. 2404-2408
Author(s):  
Jun Ma ◽  
Wen Ying Su

In view of the heavy workload and possible intervention to the normal traffic flow during the performance testing of road traffic signs, this paper is designed to present a system that can be installed in an automobile and automatically track and analyze the performance of traffic signs. The system consists of a carrying vehicle, GPS, IMU, area-array cameras, frame grabbers, data acquisition software and data analysis software. Based on close-range photogrammetry technology, the system is designed with a set of effective road traffic signs automatic detection algorithms, which can automatically measure and analyze the properties of road traffic signs, such as dimensions, headroom and verticality of the column, etc.


2021 ◽  
Vol 11 (6) ◽  
pp. 2785
Author(s):  
Michael Lösler ◽  
Cornelia Eschelbach ◽  
Thomas Klügel ◽  
Stefan Riepl

A global geodetic reference system (GGRS) is realized by physical points on the Earth’s surface and is referred to as a global geodetic reference frame (GGRF). The GGRF is derived by combining several space geodetic techniques, and the reference points of these techniques are the physical points of such a realization. Due to the weak physical connection between the space geodetic techniques, so-called local ties are introduced to the combination procedure. A local tie is the spatial vector defined between the reference points of two space geodetic techniques. It is derivable by local measurements at multitechnique stations, which operate more than one space geodetic technique. Local ties are a crucial component within the intertechnique combination; therefore, erroneous or outdated vectors affect the global results. In order to reach the ambitious accuracy goal of 1 mm for a global position, the global geodetic observing system (GGOS) aims for strategies to improve local ties, and, thus, the reference point determination procedures. In this contribution, close range photogrammetry is applied for the first time to determine the reference point of a laser telescope used for satellite laser ranging (SLR) at Geodetic Observatory Wettzell (GOW). A measurement campaign using various configurations was performed at the Satellite Observing System Wettzell (SOS-W) to evaluate the achievable accuracy and the measurement effort. The bias of the estimates were studied using an unscented transformation. Biases occur if nonlinear functions are replaced and are solved by linear substitute problems. Moreover, the influence of the chosen stochastic model onto the estimates is studied by means of various dispersion matrices of the observations. It is shown that the resulting standard deviations are two to three times overestimated if stochastic dependencies are neglected.


2021 ◽  
Author(s):  
Ali Mirzazade ◽  
Cosmin Popescu ◽  
Thomas Blanksvärd ◽  
Björn Täljsten

<p>In bridge inspection, vertical displacement is a relevant parameter for both short and long-term health monitoring. Assessing change in deflections could also simplify the assessment work for inspectors. Recent developments in digital camera technology and photogrammetry software enables point cloud with colour information (RGB values) to be generated. Thus, close range photogrammetry offers the potential of monitoring big and small-scale damages by point clouds. The current paper aims to monitor geometrical deviations in Pahtajokk Bridge, Northern Sweden, using an optical data acquisition technique. The bridge in this study is scanned two times by almost one year a part. After point cloud generation the datasets were compared to detect geometrical deviations. First scanning was carried out by both close range photogrammetry (CRP) and terrestrial laser scanning (TLS), while second scanning was performed by CRP only. Analyzing the results has shown the potential of CRP in bridge inspection.</p>


2018 ◽  
Vol 7 (9) ◽  
pp. 350 ◽  
Author(s):  
Luis López-Fernández ◽  
Susana Lagüela ◽  
Pablo Rodríguez-Gonzálvez ◽  
José Martín-Jiménez ◽  
Diego González-Aguilera

Close-range photogrammetry and thermographic imaging techniques are used for the acquisition of all the data needed for the non-invasive assessment of a honeybee hive population. Temperature values complemented with precise 3D geometry generated using novel close-range photogrammetric and computer vision algorithms are used for the computation of the inner beehive temperature at each point of its surface. The methodology was validated through its application to three reference beehives with different population levels. The temperatures reached by the exterior surfaces of the hives showed a direct correlation with the population level. In addition, the knowledge of the 3D reality of the hives and the position of each temperature value allowed the positioning of the bee colonies without the need to open the hives. This way, the state of honeybee hives regarding the growth of population can be estimated without disturbing its natural development.


Sign in / Sign up

Export Citation Format

Share Document