scholarly journals UV Mutagenesis as a Strategy to Enhance Growth and Lipid Productivity of Chlorella sp. 042

2020 ◽  
Vol 5 (3) ◽  
pp. 218
Author(s):  
Rike Rachmayati ◽  
Eva Agustriana ◽  
Delicia Yunita Rahman

Microalgae appeared to be an alternative feedstock for renewable biodiesel production due to their capability to accumulate considerable amounts of lipids. In this study, mutagenesis using UVC light with different periods was applied to Chlorella sp. 042 to produce a microalgae strain with high lipid productivity of 45, 60, and 75 min. The Nile red fluorescence method was conducted to select a Chlorella sp. mutant with high neutral lipid and generated one mutant from every UV mutation period, M45-06, M60-02, and M75-21. All of the mutants have higher growth rates than the wild type. Chlorella sp. 042 M60-02 achieved the highest lipid productivity, with 34 mg L-1 day-1. Furthermore, as other major biochemical components, carbohydrate and protein contents were determined. Our results showed that all the mutants enhance their carbohydrate and protein contents compared to the wild type. However, mutations for more than 60 min do not intensely change the protein content of mutant microalgae. Gas chromatography-mass spectrophotometry analysis revealed that M60-02 mutant has similar FAME profiles with the wild type, which contain palmitic acid (C16:0), stearic acid (C 18:0), oleic acid (C18:1), and linoleic acid (C18:2). These results demonstrate that the UV mutation of Chlorella sp. 042 for 60 min is suitable as a source of biodiesel production.

BioResources ◽  
2011 ◽  
Vol 7 (1) ◽  
pp. 686-695
Author(s):  
Xun Yang ◽  
Pinghuai Liu ◽  
Zongdi Hao ◽  
Jie Shi ◽  
Sen Zhang

Fifty-three algal cultures were isolated from freshwater lakes in Hainan, China. Four microalgal isolates were selected because they could be successfully cultivated at high density and demostrated a strong fluorescence after being stained with nile red. These cultures were identified as strains of Chlorella sp. C11, Chlamydomonas reinhardtii C22, Monoraphidium dybowskii C29, and Chlorella sp. HK12 through microscopic and 18S rDNA analysis. Under similar conditions, the lipid productivity of Chlorella sp. C11, Chla. reinhardtii C22, M. dybowskii C29 , and Chlorella sp. HK12 were 1.88, 2.79, 2.00, and 3.25 g L-1, respectively. Chla. reinhardtii C22 yielded a higher lipid content (51%), with a lower biomass concentration (5.47 g dwt L-1). Chlorella sp. HK12 reached a growth rate of 0.88 day-1 at OD540nm and yielded a biomass concentration of 7.56 g dwt L-1, with a high lipid content of 43%. Gas chromatography/ mass spectrometry analysis indicated that lipid fraction mainly comprises hydrocarbons including palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acids. Our results suggest that Chlorella sp. HK12 is a promising species for biodiesel production, because of its high lipid productivity and a relatively high content of oleic acid.


2014 ◽  
Vol 153 ◽  
pp. 230-235 ◽  
Author(s):  
Ayumi Tanimura ◽  
Masako Takashima ◽  
Takashi Sugita ◽  
Rikiya Endoh ◽  
Minako Kikukawa ◽  
...  

2021 ◽  
Author(s):  
Hanaa Morsi ◽  
Hamed Eladel ◽  
Ayah Maher

Abstract The present study focused on the feasibility of using municipal wastewater (WW) as culture medium for cultivation of microalgae. The study aimed to assess the efficiency of microalgae in nutrients removing capacity from wastewater and its biomass and lipid productivity for using as biodiesel feedstock. Based on that, the green microalga Asterarcys quadricellulare was isolated and grown for 24 days in Bold’s Basal Medium as a control and at different concentration of secondary treated municipal wastewater (WW) diluted with distilled water (25%, 50%, 75% and 100%WW). Results of 75%WW treatment recorded 96.6%, 98.4%, and 89.9% removal efficiency for, nitrate, ammonia and total phosphorus, respectively. Also, it revealed high biomass productivity and biomass content, where it recorded 69.0 mgL-1 day-1, and 1.44 g/L, respectively. Likewise, high lipid productivity 17.2 mg L−1 day−1 and 360.6 mg/L lipid content. Consequently, Asterarcys quadricellulare fatty acids profile estimation revealed an increase in Oleic, Palmitic and Linoleic acids levels. Most properties of biodiesel derived from the studied microalga meet with values established by the ASTM D6751 and EN 14214 biodiesel standards. According to this analysis, A. quadricellulare microalga could be used for wastewater bioremediation and biomass production with a suitable content of lipids proper as biodiesel feedstock. The predictive biodiesel properties pointed that it has a good quality compared with international standards.


2019 ◽  
Vol 126 ◽  
pp. 211-219 ◽  
Author(s):  
Dong Woo Kim ◽  
Won-Sub Shin ◽  
Min-Gyu Sung ◽  
Bongsoo Lee ◽  
Yong Keun Chang

2020 ◽  
Vol 48 (3) ◽  
pp. 1439-1457
Author(s):  
Hanaa H. ABD EL BAKY ◽  
Gamal S. EL BAROTY

The biodiesel can be produced from diverse microalgae lipids as alternative and renewable fuel. Thus, the aim of this study was to optimize the Chlamydomonas reinhardtii promising species as biodiesel feedstock for large-scale cultivation in Egypt. To understand some of the triggers required for the metabolic pathway switch to lipid accumulation, the effect of carbon sources and the three elements availability (N, P, S) in C. reinhardtii growth medium was determined. A local microalgae C. reinhardtii was cultured in modified Sueoka medium containing various concentrations of CO2 and bicarbonate (NaHCO3) (in 2-liter flasks) as a carbon source. The optimal source in term biomass, high lipid productivity (10.3 mgL-1d-1) and a higher lipid content (22.76%) were obtained in 6% CO2 culture. Then, the availability of N, P, S (various concentrations of N, P and S) nutrients elements was added to 6% CO2 culture, for produce a highest lipid content and lipid productivity. As expected, under low availability N-1.78 mM; P-0.14mM and S-0.10 mM mediums, C. reinhardtii showed a high accumulation lipid content. Therefore, to improve the economic feasibility of microalgae biofuels production, its concentrations were selected to combine (N+P+S) in order to cultivation of C. reinhardtii in a multi-tubular photobioreactor (400 liter) to produce high lipid contents. Under limited condition, the biomass dry weight, biomass productivity, lipid content and lipid productivity were found to be 3.11 (gL-1), 0.15±0.012 (g-1L-1d-1), 22.76% (w/w %) and 1.9± 0.35 (mg-1L-1d-1), respectively. The extracted lipid was found to have physical and chemical properties similar that plant oils using for biodiesel production. The FAME profiling of prepared biodiesel shows the presence of considerable amount of 36.97% saturated fatty acids (palmitic acid and stearic acid, together) with 27.33% unsaturated (oleic acid and linoleic acid) fatty acids. The FAME had a low iodine value and high CN, which meet with the appropriate of biodiesel standards (EN 14214 and ASTM D6751). Thus, C. reinhardtii appears to be more feasible for high quality biodiesel production.


1995 ◽  
Vol 270 (11) ◽  
pp. 6357-6369 ◽  
Author(s):  
Sergei B. Ruvinov ◽  
Xiang-Jiao Yang ◽  
Kevin D. Parris ◽  
Utpal Banik ◽  
S. Ashraf Ahmed ◽  
...  

2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Samar A. El-Mekkawi ◽  
N. N. El-Ibiari ◽  
Ola A. El-Ardy ◽  
Nabil M. Abdelmonem ◽  
Ahmed H. Elahwany ◽  
...  

Abstract Background Biodiesel is expected to play a key role in the development of a sustainable, economical, and environmentally safe source of energy. The third generation of biodiesel is derived from microalgae and cyanobacteria that have sufficient amount of oil. The optimization of biomass and oil content in biodiesel production based on algal cultivation relies upon several factors. The present experimental work aims at optimizing some of the cultivation conditions to obtain maximum oil and biomass yield and create a prediction model that describe the effect of the initial inoculum concentration, and irradiance on the biomass yield and oil concentration were designed using Design Expert 6.0.8. Results The results revealed that the optimum surface-to-volume ratio for the airlift bubble column photobioreactor was 0.9, and the most applicable model for describing Microcystis aeruginosa growth was the hyperbolic tangent model with a model constant value of 1.294 mg·L− 1·d− 1/μmol·m− 2·s− 1. The optimum cultivation conditions were 81 μmol·m− 2·s− 1 irradiance and 67 mg·L− 1 initial inoculum concentration, and these conditions achieved a biomass yield of 163 mg·L− 1·d− 1 and an oil concentration of 143 mg·L− 1. Conclusions This work focused on the cultivation of microalgae in closed systems. Cyanobacteria as M. aeruginosa has high lipid content, and high lipid productivity makes it suitable as a lipid feed stock for biodiesel production. The response surface method was the most suitable route to study the simultaneous influence of irradiance and initial inoculum concentration through statistical methods as well as to establish a model for predicting the biomass yield and oil concentration of M. aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document