scholarly journals Effects of Arbuscular Mycorrhizal Fungi on Accumulation of Heavy Metals in Rhizosphere Soil

2018 ◽  
Vol 3 (1) ◽  
pp. 31
Author(s):  
Jiayong HE ◽  
Weijie XU

<p><em>The rhizosphere soil arbuscular mycorrhizal fungi will affect the absorption of heavy metal substances by the host plants. The effects of the arbuscular mycorrhizal fungi are inhibitory and conversion effects. The type and quantity of AMF fungi are different, and there are also differences in the absorption of arbuscular mycorrhizal fungi in the rhizosphere soil. Changes in the accumulation of heavy metals will affect the growth of arbuscular mycorrhizal fungi in the rhizosphere soil. In this paper, a preliminary investigation is made as to whether the AMF fungus number will affect the absorption of heavy metal Cd. Experiments show that with the increase of soil spores, the available cadmium content of soil also tends to increase.</em></p>

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 815 ◽  
Author(s):  
Rajni Dhalaria ◽  
Dinesh Kumar ◽  
Harsh Kumar ◽  
Eugenie Nepovimova ◽  
Kamil Kuča ◽  
...  

Heavy metal accumulation in plants is a severe environmental problem, rising at an expeditious rate. Heavy metals such as cadmium, arsenic, mercury and lead are known environmental pollutants that exert noxious effects on the morpho-physiological and biological attributes of a plant. Due to their mobile nature, they have become an extended part of the food chain and affect human health. Arbuscular mycorrhizal fungi ameliorate metal toxicity as they intensify the plant’s ability to tolerate metal stress. Mycorrhizal fungi have vesicles, which are analogous to fungal vacuoles and accumulate massive amount of heavy metals in them. With the help of a pervasive hyphal network, arbuscular mycorrhizal fungi help in the uptake of water and nutrients, thereby abating the use of chemical fertilizers on the plants. They also promote resistance parameters in the plants, secrete a glycoprotein named glomalin that reduces the metal uptake in plants by forming glycoprotein–metal complexes, and improve the quality of the soil. They also assist plants in phytoremediation by increasing the absorptive area, increase the antioxidant response, chelate heavy metals and stimulate genes for protein synthesis that reduce the damage caused by free radicals. The current manuscript focuses on the uptake of heavy metals, accumulation, and arbuscular mycorrhizal impact in ameliorating heavy metal stress in plants.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


2021 ◽  
Author(s):  
Maede Faghihinia ◽  
Yi Zou ◽  
Yongfei Bai ◽  
Martin Dudáš ◽  
Rob Marrs ◽  
...  

Abstract Arbuscular mycorrhizal fungi (AMF) are the predominant type of mycorrhizal fungi in roots and rhizosphere soil of grass species worldwide. Grasslands are currently experiencing increasing grazing pressure, but it is not yet clear how grazing intensity and host plant grazing preference by large herbivores interact with soil- and root-associated AMF communities. Here, we tested whether the diversity and community composition of AMF in the roots and rhizosphere soil of two dominant perennial grasses grazed differently by livestock change in response to grazing intensity. We conducted a study in a long-term field experiment in which seven levels of field-manipulated grazing intensities were maintained for 13 years in a typical steppe grassland in northern China. We extracted DNA from the roots and rhizosphere soil of two dominant grasses, Leymus chinense (Trin.) Tzvel. and Stipa grandis P. Smirn, with contrasting grazing preference by sheep. AMF DNA from root and soil samples were then subjected to molecular analysis. Our results showed that AMF α-diversity (richness) at the virtual taxa (VT) level varied as a function of grazing intensity. Different VTs showed completely different responses along the gradient, one increasing, one decreasing and others showing no response. Glomeraceae was the most abundant AMF family along the grazing gradient, which fits well with the theory of disturbance tolerance of this group. In addition, sheep grazing preference for host plants did not explain a considerable variation in AMF α-diversity. However, the two grass species exhibited different community composition in their roots and rhizosphere soils. Roots exhibited a lower α-diversity and higher β-diversity within the AMF community than soils. Overall, our results suggest that long-term grazing intensity might have changed the abundance of functionally-diverse AMF taxa in favor of those with disturbance-tolerant traits. We suggest our results would be useful in informing the choice of mycorrhizal fungi indicator variables when assessing the impacts of grassland management choices on grassland ecosystem functioning.


Land Science ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. p60
Author(s):  
Hongna Mu ◽  
Lei Fan ◽  
Shaohua Zhu ◽  
Taoze Sun

Arbuscular mycorrhizal fungi(AMF) can promote the absorption of soil water and mineral nutrients, improve photosynthesis, and make host attain higher quality finally by establishing symbiotic relationship between AMF and host root. To improve Tulip gesneriana quality have practical meaning under no bad affect to cultivation soil, in the light of its economical and ecological values. However, some AMF may be diverse from others, the concrete function of AMF on commercial tulip varieties need to explore. Therefore, three different sets of  arbuscular mycorrhizal fungi were inoculated into tulip rhizosphere soil, which were set as 4(Diversispora versiformis), 7(Diversispora spurca) and 1 + 3 + 4 (Rhizophagus intraradias + Funneliformis mosseae + Diversispora versiformis), respectively. The results showed that the activity of most of the measured indices increased, the average root diameter and sucrose content decreased in those three mycorrhizal treatments. Our research provide some theoretical basis for the application of AMF on T.gesneriana ecological cultivation in future.


Sign in / Sign up

Export Citation Format

Share Document