scholarly journals An Overview of the Cure of HIV/AIDS Harbal Therapy Containing Natural Antioxidant, Vitamins and Minerals

2021 ◽  
Vol 6 (3) ◽  
pp. p26
Author(s):  
Silas David Emmanuel ◽  
I. M. Bugaje ◽  
S. M. Mohammmad

Purposes: The unprecedented and sequence through which an estimate of 25 million lives have gone to their early grave yard through Acquired Immune-deficiency Syndrome HIV/AIDS can never be quantified; since, when it was first describes in 1981. In 2017/2018 by (UNAIDS) it was estimated globally for about 36.9millions people were living with Human, Immunodeficiency Virus (HIV) so to say. Henceforth the progress made in the field of treatment in the form of Antiretroviral Therapy (ART) disease has not been fully ascertain for the cure of HIV/AIDS; except, perpetual clinical suppressions. Thus, the current challenges that man kinds faces with the used of perpetual intake of antiretroviral therapy (clinical suppression)/artificial vaccine is un-justifiable. However, search for HIV therapy have open a new chapter in the search for novel drugs from Kaduna Polytechnic procedure. This review focuses on vitamins, antioxidant, mineral and supplement as sources of in-hibitors or eradications for human immunodeficiency virus type-1 (HIV) reverse transcriptase. Objective: To assess whether vitamins, antioxidant, minerals supplement are effective and safe in eradicating mortality and morbidity among populace with HIV infection. Selection criteria: Randomized control trials were selected that compared the effect of vitamins (A, C, D, E, K,), antioxidant, minerals and supplement with regard to treatment measures in HIV infected persons. Methods: To prevent authors bias, based on a systematic search of literature; anti-HIV reverse transcriptase activity of some plant’s species like those of Eucalyptus leaves, Garlic fresh fruits, Baobab leaves, aloe vera, neem leaves, moringa leaves, bitter leaves etc. respectively. Thus, these medicinal plants contain an appreciable or above values antioxidant compound or photochemical like those of Phenolic, anthraquinone, tannin, falconoid, terpenoid, lignin, coumarins etc. respectively. Contrarywise, these phytochemical compounds have been exploited traditionally for the cure of many diseases as well as inhibition of viral replication/transcription. Further investigations have shared more light through which phytochemicals compounds inhibit virus replication either during the viral entry inside the host cell or during their replication. Originality: in view of the current investigation or to accelerate drug discovery and innovation, this review recommends the urgent need to tap into the enrich locally available endogenous knowledge of putative anti- HIV/AIDS, photochemical and their derivatives, (reverse pharmacology, determine pan assay, interferences compounds, microbial enzyme metabolites relationship and their mechanisms to treat virial diseases.

1998 ◽  
Vol 42 (12) ◽  
pp. 3225-3233 ◽  
Author(s):  
Elise A. Sudbeck ◽  
Chen Mao ◽  
Rakesh Vig ◽  
T. K. Venkatachalam ◽  
Lisa Tuel-Ahlgren ◽  
...  

ABSTRACT Two highly potent dihydroalkoxybenzyloxopyrimidine (DABO) derivatives targeting the nonnucleoside inhibitor (NNI) binding site of human immunodeficiency virus (HIV) reverse transcriptase (RT) have been designed based on the structure of the NNI binding pocket and tested for anti-HIV activity. Our lead DABO derivative, 5-isopropyl-2-[(methylthiomethyl)thio]-6-(benzyl)-pyrimidin-4-(1H)-one, elicited potent inhibitory activity against purified recombinant HIV RT and abrogated HIV replication in peripheral blood mononuclear cells at nanomolar concentrations (50% inhibitory concentration, <1 nM) but showed no detectable cytotoxicity at concentrations as high as 100 μM.


1998 ◽  
Vol 9 (5) ◽  
pp. 412-421 ◽  
Author(s):  
C Chamorro ◽  
M-J Camarasa ◽  
M-J Pérez-Pérez ◽  
E de Clercq ◽  
J Balzarini ◽  
...  

Novel derivatives of the potent human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) inhibitor TSAO-T have been designed, synthesized and tested for their in vitro antiretro-viral activity against HIV. These TSAO-T derivatives have been designed as potential bidentate inhibitors of HIV-1 RT, which combine in their structure the functionality of a non-nucleoside RT inhibitor (TSAO-T) and a bivalent ion-chelating moiety (a β-diketone moiety) linked through an appropriate spacer to the N-3 of thymine of TSAO-T . Some of the new compounds have an anti-HIV-1 activity comparable to that of the parent compound TSAO-T, but display a markedly increased antiviral selectivity. There was a clear relationship between antiviral activity and the length of the spacer group that links the TSAO molecule with the chelating moiety. A shorter spacer invariably resulted in increased antiviral potency. None of the TSAO-T derivatives were endowed with anti-HIV-2 activity.


2003 ◽  
Vol 47 (9) ◽  
pp. 2951-2957 ◽  
Author(s):  
Miguel Stevens ◽  
Christophe Pannecouque ◽  
Erik De Clercq ◽  
Jan Balzarini

ABSTRACT A new class of pyridine oxide derivatives as inhibitors of human immunodeficiency virus type 1 (HIV-1) and/or HIV-2 replication in cell culture has been identified. The compounds, which specifically inhibit HIV-1, behave as typical nonnucleoside reverse transcriptase inhibitors (NNRTIs). The most active congener of this group, JPL-133 (UC-B3096), has a 50% effective concentration of 0.05 μg/ml for HIV-1(IIIB) with a selectivity index of approximately 760 in CEM cell cultures. However, the cytostatic activity of most pyridine oxide derivatives highly depended on the nature of the cell line. All compounds, including those pyridine oxide derivatives that inhibit both HIV-1 and HIV-2 replication, select for NNRTI-characteristic mutations in the HIV-1 reverse transcriptase of HIV-infected cell cultures (i.e., Lys103Asn, Val108Ile, Glu138Lys, Tyr181Cys and Tyr188His). These amino acid mutations emerged mostly through transition of guanine to adenine or adenine to guanine in the corresponding codons of the reverse transcriptase (RT) gene. The HIV-1-specific pyridine oxide derivatives lost their antiviral activity against HIV-1 strains containing these mutations in the RT. However, most compounds retained pronounced antiviral potency against virus strains that contained other NNRTI-characteristic RT mutations, such as Leu100Ile and Val179Asp. Furthermore, the complete lack of inhibitory activity of the pyridine oxide derivatives against recombinant HIV-2 RT and partial retention of anti-HIV-1 activity against HIV-1 strains that contain a variety of HIV-1-characteristic mutations suggest that the pyridine oxide derivatives must have a second target of antiviral action independent from HIV-1 RT.


2007 ◽  
Vol 51 (9) ◽  
pp. 3147-3154 ◽  
Author(s):  
Richard Hazen ◽  
Robert Harvey ◽  
Robert Ferris ◽  
Charles Craig ◽  
Phillip Yates ◽  
...  

ABSTRACT Brecanavir, a novel tyrosyl-based arylsulfonamide, high-affinity, human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), has been evaluated for anti-HIV activity in several in vitro assays. Preclinical assessment of brecanavir indicated that this compound potently inhibited HIV-1 in cell culture assays with 50% effective concentrations (EC50s) of 0.2 to 0.53 nM and was equally active against HIV strains utilizing either the CXCR4 or CCR5 coreceptor, as was found with other PIs. The presence of up to 40% human serum decreased the anti-HIV-1 activity of brecanavir by 5.2-fold, but under these conditions the compound retained single-digit nanomolar EC50s. When brecanavir was tested in combination with nucleoside reverse transcriptase inhibitors, the antiviral activity of brecanavir was synergistic with the effects of stavudine and additive to the effects of zidovudine, tenofovir, dideoxycytidine, didanosine, adefovir, abacavir, lamivudine, and emtricitabine. Brecanavir was synergistic with the nonnucleoside reverse transcriptase inhibitor nevirapine or delavirdine and was additive to the effects of efavirenz. In combination with other PIs, brecanavir was additive to the activities of indinavir, lopinavir, nelfinavir, ritonavir, amprenavir, saquinavir, and atazanavir. Clinical HIV isolates from PI-experienced patients were evaluated for sensitivity to brecanavir and other PIs in a recombinant virus assay. Brecanavir had a <5-fold increase in EC50s against 80% of patient isolates tested and had a greater mean in vitro potency than amprenavir, indinavir, lopinavir, atazanavir, tipranavir, and darunavir. Brecanavir is by a substantial margin the most potent and broadly active antiviral agent among the PIs tested in vitro.


2014 ◽  
Vol 95 (12) ◽  
pp. 2778-2783 ◽  
Author(s):  
Lauren B. Beach ◽  
Jonathan M. Rawson ◽  
Baek Kim ◽  
Steven E. Patterson ◽  
Louis M. Mansky

Human immunodeficiency virus type 2 (HIV-2) infects about two million people worldwide. HIV-2 has fewer treatment options than HIV-1, yet may evolve drug resistance more quickly. We have analysed several novel drugs for anti-HIV-2 activity. It was observed that 5-azacytidine, clofarabine, gemcitabine and resveratrol have potent anti-HIV-2 activity. The EC50 values for 5-azacytidine, clofarabine and resveratrol were found to be significantly lower with HIV-2 than with HIV-1. A time-of-addition assay was used to analyse the ability of these drugs to interfere with HIV-2 replication. Reverse transcription was the likely target for antiretroviral activity. Taken together, several novel drugs have been discovered to have activity against HIV-2. Based upon their known activities, these drugs may elicit enhanced HIV-2 mutagenesis and therefore be useful for inducing HIV-2 lethal mutagenesis. In addition, the data are consistent with HIV-2 reverse transcriptase being more sensitive than HIV-1 reverse transcriptase to dNTP pool alterations.


2001 ◽  
Vol 75 (9) ◽  
pp. 4413-4419 ◽  
Author(s):  
Zheng Fan ◽  
Xiao-Li Huang ◽  
Luann Borowski ◽  
John W. Mellors ◽  
Charles R. Rinaldo

ABSTRACT We demonstrate that dendritic cells loaded in vitro with human immunodeficiency virus type 1 (HIV-1) protein-liposome complexes activate HLA class I-restricted anti-HIV-1 cytotoxic T-lymphocyte and gamma interferon (IFN-γ) responses in autologous CD8+ T cells from late-stage HIV-1-infected patients on prolonged combination drug therapy. Interleukin-12 enhanced this effect through an interleukin-2- and IFN-γ-mediated pathway. This suggests that dendritic cells from HIV-1-infected persons can be engineered to evoke stronger anti-HIV-1 CD8+ T-cell reactivity as a strategy to augment antiretroviral therapy.


2000 ◽  
Vol 74 (2) ◽  
pp. 1023-1028 ◽  
Author(s):  
Tomozumi Imamichi ◽  
Tanima Sinha ◽  
Hiromi Imamichi ◽  
Yi-Ming Zhang ◽  
Julie A. Metcalf ◽  
...  

ABSTRACT A variant of human immunodeficiency virus type 1 (HIV-1) possessing a deletion in the reverse transcriptase (RT) gene at codon 67 was identified in a patient who had failed combination antiretroviral therapy. This deletion initially emerged under the selective pressure of combination therapy with 3′-azido-3′-deoxythymidine (AZT) plus 2′,3′-dideoxyinosine. It has persisted for more than 3 years in association with the accumulation of a variety of other well-described drug resistance mutations and an uncharacterized mutation at RT codon 69 (T69G). Phenotypic studies demonstrated that the codon 67 deletion by itself had little effect on AZT sensitivity. However, in the context of the T69G mutation and three other mutations known to be associated with AZT resistance (K70R, T215F, and K219Q), this deletion led to a increase in AZT resistance from 8.5-fold to 445-fold. A further increase in resistance (up to 1,813-fold) was observed when two mutations associated with nonnucleoside RT inhibitor resistance (K103N and L74I) were added to the deletion T69G K70R T215F K219Q construct. Hence, these results establish that a deletion at RT codon 67 may be selected for in the presence of antiretroviral therapy and may lead to high-level resistance to AZT.


Sign in / Sign up

Export Citation Format

Share Document