scholarly journals MOLECULAR DOCKING OF ANTIMYCIN A3 ANALOGS AND ITS AROMATIC SEGMENTS AS INHIBITORS OF APOPTOSIS PROTEIN MARKER BCL-XL AND MCL-1

Author(s):  
Ade Arsianti ◽  
Fadilah Fadilah ◽  
Linda Erlina ◽  
Rafika Indah Paramita

  Objective: Apoptosis is an important cellular process that causes the death of damaged cells. Its malfunction can lead to cancer development and poor response to conventional chemotherapy. Cellular proteins from the B-cell lymphoma 2 (BCL-2) family are crucial for apoptosis. Breast cancer is the most commonly diagnosed cancer among women worldwide. The aim of this work was to design using in silico docking antimycin A3, antimycin analogs, and its aromatic segments as inhibitors of Bcl-xl and Mcl-1.Methods: In silico molecular docking approach has been utilized to find the potential anticancer from antimycin A3 analogs and its aromatic segments. Antimycin A3 analogs and its aromatic segments were modeled into three-dimensional (3D) structures using Marvin Sketch. Based on Protein Data Bank, 3ZLN for Bcl-xl, and 5IEZ for Mcl-1 were selected as apoptosis protein marker from BCL-2 family. Geometry optimization and minimization of energy 3D structure of antimycin A3 analogs and segments (ligands) using the AutoDock software. Docking process and amino acid residue analysis were executed using AutoDock software. The best docking score was shown by the lowest binding energy and also checked with Lipinski rule of five.Results: In silico molecular docking showed antimycin A3 analogs, amide 5 and aromatic segment 14 have the best interaction and activity for Bcl-xl receptor inhibition. Moreover, amide 5 and segment 15 showed the best interaction and activity for Mcl-1 receptor inhibition.Conclusion: Our results clearly demonstrate that amide 5, segment 14, and segment 15 of antimycin A3 analog have a strong inhibitory activity against Bcl-xl and Mcl-1, and should be further developed as a promising candidate for the new anti-apoptosis agents. 

Author(s):  
Sisir Nandi ◽  
Mohit Kumar ◽  
Mridula Saxena ◽  
Anil Kumar Saxena

Background: The novel coronavirus disease (COVID-19) is caused by a new strain (SARS-CoV-2) erupted in 2019. Nowadays, it is a great threat that claims uncountable lives worldwide. There is no specific chemotherapeutics developed yet to combat COVID-19. Therefore, scientists have been devoted in the quest of the medicine that can cure COVID- 19. Objective: Existing antivirals such as ASC09/ritonavir, lopinavir/ritonavir with or without umifenovir in combination with antimalarial chloroquine or hydroxychloroquine have been repurposed to fight the current coronavirus epidemic. But exact biochemical mechanisms of these drugs towards COVID-19 have not been discovered to date. Method: In-silico molecular docking can predict the mode of binding to sort out the existing chemotherapeutics having a potential affinity towards inhibition of the COVID-19 target. An attempt has been made in the present work to carry out docking analyses of 34 drugs including antivirals and antimalarials to explain explicitly the mode of interactions of these ligands towards the COVID-19protease target. Results: 13 compounds having good binding affinity have been predicted towards protease binding inhibition of COVID-19. Conclusion: Our in silico docking results have been confirmed by current reports from clinical settings through the citation of suitable experimental in vitro data available in the published literature.


2021 ◽  
Vol 33 (5) ◽  
pp. 1090-1098
Author(s):  
M.R. Ezhilarasi ◽  
A.B. Senthieel Khumar ◽  
P. Elavarasan

A new series of novel 4-(furan-2-yl)-6-(4-morpholinophenyl)pyrimidine-amines (4a-c) were synthesized and characterized by elemental analysis and spectral analysis like IR, 1D 1H & 13C NMR. The synthesized compounds 4a-c were evaluated for their biological studies. The zone of inhibitions were examined for synthesized compounds 4a-c besides the identical set of microbial strains, especially that compound 4a against S. aureus, S. pyogenes, E. coli, compound 4b against P. aeruginosa has excellent antibacterial activity. Compound 4c shows good inhibition against C. albicans. Also in silico molecular docking and ADME predictions were carried for all the compounds. The docking studies were examined by two different proteins like 1UAG protein and 1OQA protein. in silico docking provides of the compounds have good docking score compared with the standard. In the ADME predictions all the compounds were met criteria. The synthesized compounds all of them obeyed the drug-likeness properties.


Author(s):  
Ade Arsianti Arsianti ◽  
Hendri Astuty ◽  
Fadilah Fadilah ◽  
Anton Bahtiar ◽  
Hiroki Tanimoto ◽  
...  

Objective: Malaria is an infection disease caused by plasmodium parasite with high prevalence in tropic and subtropic countries. The aim of this work was to design and screening of  gallic acid derivatives as inhibitors of malarial dihydrofolate reductase (DHFR) by in silico docking.Methods: The derivatives were designed by expanding the carboxyl group of gallic acid with open-chain moiety of L-threonine-allyl esters, as well as to modify the hydroxy groups on the aromatic ring of gallic acid with methoxyl group in the derivatives.  In silico approach has been utilized in finding the potential antimalaria of gallic acid derivatives. Fourteen Gallic acid derivatives (compound 2-15) were modeled into 3D structures by  ACD Labs software. Geometry optimization and minimization of energy 3D structure of gallic acid derivatives as ligands using the MOE software.  Docking process and amino acid analysis were executed by using MOE software. Results: In silico docking study resulted in the three top-ranked compounds, namely compound 5, 8 and 12. Among those three top-ranked compounds, compound 12 (octyl gallate), exhibited the strongest interaction and greatest inhibitory activity against the receptor of malarial DHFR.Conclusion Our results clearly demonstrated that compound 12 (octyl gallate) could be developed as a promising candidate for  the new anti-malarial agent.   


2021 ◽  
Vol 12 (2) ◽  
pp. 190-198
Author(s):  
Shankar Gharge ◽  
Pooja Khagawad ◽  
Mahesh S Palled ◽  
Meenaxi M Maste ◽  
Shailendra S Suryawanshi

One of the most widely spreading diseases due to several lifestyle problems in the 21st century is diabetes mellitus. The management of diabetes mellitus is very important and essential. Plants are natural reservoir of many medicinal value added components help to overcome many chronic disorders including diabetes mellitus. Herbal drugs are prescribed in treatment of diabetes mellitus due to their good effectiveness, fewer side effects in clinical experience and relatively low costs. Screening of antidiabetic therapeutics is very important and essential for effective management of diabetes mellitus. Many researchers have worked on extraction, isolation, characterization of extracts and bioactive fractions from medicinal plant also they have established profile and data of interaction of active components against various targets and enzymes of diabetes mellitus using In-silico molecular docking tools. Molecular docking is an important computational tool to predict the plausible interactions between the drug and protein in a non-covalent fashion. Extensive in silico docking procedures have been carried out to examine whether the compound is a good ligand with diabetic targets. In the present review article we have thoroughly screened research articles published in various scientific, indexed, national and international journals on In-silico molecular docking based screening of Anti-Diabetic potentials and therapeutics from medicinal plant and extensively presented.


2020 ◽  
Author(s):  
Sahar Qazi ◽  
Mustafa Alhaji Isa ◽  
Adam Mustapha ◽  
Khalid Raza ◽  
Ibrahim Alkali Allamin ◽  
...  

<p>The Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) is an infectious virus that causes mild to severe life-threatening upper respiratory tract infection. The virus emerged in Wuhan, China in 2019, and later spread across the globe. Its genome has been completely sequenced and based on the genomic information, the virus possessed 3C-Like Main Protease (3CLpro), an essential multifunctional enzyme that plays a vital role in the replication and transcription of the virus by cleaving polyprotein at eleven various sites to produce different non-structural proteins. This makes the protein an important target for drug design and discovery. Herein, we analyzed the interaction between the 3CLpro and potential inhibitory compounds identified from the extracts of <i>Zingiber offinale</i> and <i>Anacardium occidentale</i> using in silico docking and Molecular Dynamics (MD) Simulation. The crystal structure of SARS-CoV-2 main protease in complex with 02J (5-Methylisoxazole-3-carboxylic acid) and PEJ (composite ligand) (PDB Code: 6LU7,2.16Å) retrieved from Protein Data Bank (PDB) and subject to structure optimization and energy minimization. A total of twenty-nine compounds were obtained from the extracts of <i>Zingiber offinale </i>and the leaves of <i>Anacardium occidentale. </i>These compounds were screened for physicochemical (Lipinski rule of five, Veber rule, and Egan filter), <i>Pan</i>-Assay Interference Structure (PAINS), and pharmacokinetic properties to determine the Pharmaceutical Active Ingredients (PAIs). Of the 29 compounds, only nineteen (19) possessed drug-likeness properties with efficient oral bioavailability and less toxicity. These compounds subjected to molecular docking analysis to determine their binding energies with the 3CLpro. The result of the analysis indicated that the free binding energies of the compounds ranged between ˗5.08 and -10.24kcal/mol, better than the binding energies of 02j (-4.10kcal/mol) and PJE (-5.07kcal.mol). Six compounds (CID_99615 = -10.24kcal/mol, CID_3981360 = 9.75kcal/mol, CID_9910474 = -9.14kcal/mol, CID_11697907 = -9.10kcal/mol, CID_10503282 = -9.09kcal/mol and CID_620012 = -8.53kcal/mol) with good binding energies further selected and subjected to MD Simulation to determine the stability of the protein-ligand complex. The results of the analysis indicated that all the ligands form stable complexes with the protein, although, CID_9910474 and CID_10503282 had a better stability when compared to other selected phytochemicals (CID_99615, CID_3981360, CID_620012, and CID_11697907). </p>


2020 ◽  
Author(s):  
Sahar Qazi ◽  
Mustafa Alhaji Isa ◽  
Adam Mustapha ◽  
Khalid Raza ◽  
Ibrahim Alkali Allamin ◽  
...  

<p>The Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) is an infectious virus that causes mild to severe life-threatening upper respiratory tract infection. The virus emerged in Wuhan, China in 2019, and later spread across the globe. Its genome has been completely sequenced and based on the genomic information, the virus possessed 3C-Like Main Protease (3CLpro), an essential multifunctional enzyme that plays a vital role in the replication and transcription of the virus by cleaving polyprotein at eleven various sites to produce different non-structural proteins. This makes the protein an important target for drug design and discovery. Herein, we analyzed the interaction between the 3CLpro and potential inhibitory compounds identified from the extracts of <i>Zingiber offinale</i> and <i>Anacardium occidentale</i> using in silico docking and Molecular Dynamics (MD) Simulation. The crystal structure of SARS-CoV-2 main protease in complex with 02J (5-Methylisoxazole-3-carboxylic acid) and PEJ (composite ligand) (PDB Code: 6LU7,2.16Å) retrieved from Protein Data Bank (PDB) and subject to structure optimization and energy minimization. A total of twenty-nine compounds were obtained from the extracts of <i>Zingiber offinale </i>and the leaves of <i>Anacardium occidentale. </i>These compounds were screened for physicochemical (Lipinski rule of five, Veber rule, and Egan filter), <i>Pan</i>-Assay Interference Structure (PAINS), and pharmacokinetic properties to determine the Pharmaceutical Active Ingredients (PAIs). Of the 29 compounds, only nineteen (19) possessed drug-likeness properties with efficient oral bioavailability and less toxicity. These compounds subjected to molecular docking analysis to determine their binding energies with the 3CLpro. The result of the analysis indicated that the free binding energies of the compounds ranged between ˗5.08 and -10.24kcal/mol, better than the binding energies of 02j (-4.10kcal/mol) and PJE (-5.07kcal.mol). Six compounds (CID_99615 = -10.24kcal/mol, CID_3981360 = 9.75kcal/mol, CID_9910474 = -9.14kcal/mol, CID_11697907 = -9.10kcal/mol, CID_10503282 = -9.09kcal/mol and CID_620012 = -8.53kcal/mol) with good binding energies further selected and subjected to MD Simulation to determine the stability of the protein-ligand complex. The results of the analysis indicated that all the ligands form stable complexes with the protein, although, CID_9910474 and CID_10503282 had a better stability when compared to other selected phytochemicals (CID_99615, CID_3981360, CID_620012, and CID_11697907). </p>


2020 ◽  
Vol 20 (3) ◽  
pp. 223-235
Author(s):  
Pooja Shah ◽  
Vishal Chavda ◽  
Snehal Patel ◽  
Shraddha Bhadada ◽  
Ghulam Md. Ashraf

Background: Postprandial hyperglycemia considered to be a major risk factor for cerebrovascular complications. Objective: The current study was designed to elucidate the beneficial role of voglibose via in-silico in vitro to in-vivo studies in improving the postprandial glycaemic state by protection against strokeprone type 2 diabetes. Material and Methods: In-Silico molecular docking and virtual screening were carried out with the help of iGEMDOCK+ Pymol+docking software and Protein Drug Bank database (PDB). Based on the results of docking studies, in-vivo investigation was carried out for possible neuroprotective action. T2DM was induced by a single injection of streptozotocin (90mg/kg, i.v.) to neonates. Six weeks after induction, voglibose was administered at the dose of 10mg/kg p.o. for two weeks. After eight weeks, diabetic rats were subjected to middle cerebral artery occlusion, and after 72 hours of surgery, neurological deficits were determined. The blood was collected for the determination of serum glucose, CK-MB, LDH and lipid levels. Brains were excised for determination of brain infarct volume, brain hemisphere weight difference, Na+-K+ ATPase activity, ROS parameters, NO levels, and aldose reductase activity. Results: In-silico docking studies showed good docking binding score for stroke associated proteins, which possibly hypotheses neuroprotective action of voglibose in stroke. In the present in-vivo study, pre-treatment with voglibose showed a significant decrease (p<0.05) in serum glucose and lipid levels. Voglibose has shown significant (p<0.05) reduction in neurological score, brain infarct volume, the difference in brain hemisphere weight. On biochemical evaluation, treatment with voglibose produced significant (p<0.05) decrease in CK-MB, LDH, and NO levels in blood and reduction in Na+-K+ ATPase, oxidative stress, and aldose reductase activity in brain homogenate. Conclusion: In-silico molecular docking and virtual screening studies and in-vivo studies in MCAo induced stroke, animal model outcomes support the strong anti-stroke signature for possible neuroprotective therapeutics.


2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110150
Author(s):  
Gang Li ◽  
Wei Zhou ◽  
Xiurong Zhao ◽  
Ying Xie

The novel coronavirus, 2019-nCoV, has led to a major pandemic in 2020 and is responsible for more than 2.9 million officially recorded deaths worldwide. As well as synthetic anti-viral drugs, there is also a need to explore natural herbal remedies. The Traditional Chinese Medicines (TCMs) system has been used for thousands of years for the prevention, diagnosis, and treatment of several chronic diseases. In this paper, we performed an in silico molecular docking and interaction analysis of TCMs against SARS-CoV-2 receptor RNA-dependent RNA polymerase (RdRp). We obtained the 5 most effective plant compounds which had a better binding affinity towards the target receptor protein. These compounds areforsythoside A, rutin, ginkgolide C, icariside II, and nolinospiroside E. The top-ranked compound, based on docking score, was nolinospiroside, a glycoside found in Ophiopogon japonicas that has antioxidant properties. Protein-ligand interaction analysis discerned that nolinospiroside formed a strong bond between ARG 349 of the protein receptor and the carboxylate group of the ligand, forming a stable complex. Hence, nolinospiroside could be deployed as a lead compound against SARS-CoV-2 infection that can be further investigated for its potential benefits in curbing the viral infection.


Sign in / Sign up

Export Citation Format

Share Document