scholarly journals FORMULATION DEVELOPMENT AND EVALUATION OF ALMOND GUM BASED SUSTAINED RELEASE MATRIX TABLET OF INDOMETHACIN

Author(s):  
Ruchi Sunayana S ◽  
Gowda Dv ◽  
Vishal Gupta N ◽  
Praveen Sivadasu ◽  
Manjunath M

Objective: The aspiration of the current research involves employing various concentrations of polymer and filler to develop indomethacin sustained release (SR) matrix tablets. The objective of this research work is to reduce dosing frequency thereby increasing patients compliance and enhanced therapeutic activity.Methods: Polymers such as Almond gum (AG), polyvinylpyrrolidone (PVP), and starch at different concentrations were used for formulating SR polymeric matrix tablets. Evaluation of pre-compression and post-compression parameters was done for both granules and formulated tablets.Results: Results obtained from pre-compression parameters and post-compression parameters suggested that all the parameters are within the prescribed limits, demonstrating that formulated granules had shown better flow properties. The morphological characteristics of the developed tablet were observed by employing scanning electron microscope where the surface of the tablet was found to be smooth from the in vitro dissolution study, combination of AG (30 mg) with PVP (30 mg), and starch used as a filler has sustained the release of drug up to 10 h.Conclusion: Therefore, developed polymeric matrix tablet exhibited enhanced potency over a conventional tablet by exhibiting an excellent dissolution profile for a period of 10 h.

2021 ◽  
Vol 10 (5) ◽  
pp. 131-136
Author(s):  
Asim pasha ◽  
C N Somashekhar

The aim of the present work was to develop sustained release Lornoxicam matrix tablets with polymers like HPMC K15M, Ethyl cellulose, and Crospovidone as carriers in varying quantities. Direct compression was used to make matrix tablets. Various assessment parameters, such as hardness, friability, thickness, percent drug content, weight variation, and so on, were applied to the prepared formulations. In vitro dissolution studies were carried out for 24 hrs. The tablets were subjected to in-vitro drug release in (pH 1.2) for first 2 hrs. Then followed by (pH 6.8) phosphate buffer for next 22 hrs. And the results showed that among the six formulations FL3 showed good dissolution profile to control the drug release respectively. The drug and polymer compatibility were tested using FT-IR spectroscopy, which revealed that the drug was compatible with all polymers. It is also required to design an appropriate prolonged release formulation for Lornoxicam in order to maintain the drug's release. Hence by using the compatible polymers sustained release tablets were formulated and subjected for various types of evaluation parameters like friability, hardness, drug content and dissolution behaviour. Finally, the findings reveal that the prepared sustained release matrix tablets of lornoxicam have improved efficacy and patient compliance.


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (04) ◽  
pp. 28-36
Author(s):  
R. R Karmarkar ◽  
◽  
M. P Wagh ◽  
S.R Baviskar ◽  
S.H Patil ◽  
...  

The aim of the present study was to evaluate carboxy methyl tamarind kernal powder as a novel drug release retarding agent. To evaluate the same, sustained release matrix tablets of stavudine were prepared by using HPMC K4M and carboxy methyl tamarind kernal powder, by using a direct compression technique. The formulations were prepared by using different drug: polymer ratios into formulations such as F1 to F9. The compressed tablets were evaluated for thickness, hardness, friability, drug content and in vitro dissolution rates. Formulation F6, having a hardness of 5.46 ± 0.25, showed the desired release profile for a period of 24 h in simulated intestinal fluids (pH 7.4). Kinetic data treatment indicated that the release of stavudine from the matrix tablet follows coupling of diffusion and erosion mechanisms. The study proves that the optimized sustained release tablet is capable of releasing the drug in a sustained manner for 24 h.


Author(s):  
A. Bhavani ◽  
B. Hemalatha ◽  
K. Padmalatha

The present focus is on the development of sustained release formulations due to its inherent boons. There are several advantages of sustained release drug delivery over conventional dosage forms like improved patient compliance, reduction in fluctuation and increased safety margin of potent drug. The present study was aimed to prepare a sustained drug delivery system to design a controlled release oral dosage form of Cefpodoxime proxetil. The sustained release matrix tablets of Cefpodoxime proxetil were prepared by wet granulation and evaluated for different parameters such as weight variation, drug content, thickness, hardness, friability and In vitro release studies. The in vitro dissolution study was carried out for 12 hours using USP (Type- II) paddle apparatus in hydrochloride (0.1N) as dissolution media for first 2 hours and phosphate buffer (pH 6.8) for next 10 hours. Based on the in vitro dissolution data, formulation F8 was selected as the best formulation from Cefpodoxime proxetil formulations (F1 – F9) as the drug release was retarded up to 12 hours with 96.29 % and followed zero order release kinetics & drug release mechanism was diffusion.


2016 ◽  
Vol 8 (3) ◽  
pp. 107
Author(s):  
A Thirupathaiah ◽  
R Shyam Sunder

<p>Investigation of <em>in vitro/in vivo</em> behaviour of extended release tablets containing solid dispersions of Atorvastatin is the focus of the present research work. Atorvastatin trilayer matrix tablets were prepared by direct compression method and consisted of middle active layer with different grades of hydroxypropylmethylcellulose (HPMC), ethyl cellulose and Carbopol 934P. Barrier layers are prepared with hydrophobic polymers carnauba wax and xanthan gum. Based on the evaluation parameters, drug dissolution profile and release order kinetics HF16 was found to be optimized formulation. The developed drug delivery system provided prolonged drug release rates over a period of 24 h. The release profile of the optimized formulation (HF16) was described by the Zero-order and best fitted to Higuchi model. FTIR confirmed that there was no chemical interaction between drug and excipients used in the formulation. . In vivo bioavailability studies were conducted for optimized formulation HF16 and reference standard. The optimized formulation of Atorvastatin trilayer matrix tablet was shown significant plasma concentration with extended release and maintained for 24 hrs with patient compliance by reducing the dosage frequency, when compared with reference standard. </p>


2020 ◽  
Vol 23 (1) ◽  
pp. 10-16
Author(s):  
Ramesh Kandel ◽  
Tushar Saha ◽  
Zia Uddin Masum ◽  
Jakir Ahmed Chowdhury

Fenofibrate, a water insoluble drug was used to prepare matrix tablet with four different viscosity grades of Hydroxypropyl Methylcellulose (HPMC) which were Methocel K4M CR, Methocel K15M CR, Methocel K100M CR and Methocel K100LV CR. The concentration of those excipients was 5, 10, 20, and 40% (w/w), respectively. The content of drug in a fixed quantity of powder in every formulation was ranged between 96.47 to 104.78 %. The dissolution study was done by using USP dissolution apparatus II. The kinetics of release was analyzed by using zero-order, first order, Korsmeyer-Peppas, Higuchi and Hixon-crowell equations to explain the drug release mechanism from the matrix tablets. In-vitro dissolution profile of matrix tablets were dependent upon the HPMC concentration and dissolution was rapid for tablets containing lower polymer proportion i.e. 5,10, and 20% Percentage (w/w) HPMC than those containing 40% (w/w) HPMC. Bangladesh Pharmaceutical Journal 23(1): 10-16, 2020


Author(s):  
RAJESWARI ALETI ◽  
SRINIVASA RAO BARATAM ◽  
BANGARUTHALLI JAGIRAPU ◽  
SRAVYA KUDAMALA

Objective: The main objective of the present investigation is to develop a sustained-release (SR) formulation to optimize the postprandial elevation of glucose level in type 2 Diabetic subjects using combination therapy. In the present research work, bilayer sustained release formulation of metformin hydrochloride (MFH) and gliclazide (GLZ), based on monolithic-matrix technology was developed and evaluated. Methods: The formulations of metformin hydrochloride layer and gliclazide layer that contain polyox WSR coagulant and different viscosity grades of hydroxyl propyl methylcellulose (HPMC) as sustained-release matrix were prepared by direct compression and wet granulation method respectively. The bilayer tablets were prepared after carrying out the optimization of metformin layer and evaluated for various pre-compression and post-compression parameters. For the best formulation selected on basis of in vitro evaluation of tablets, Fourier-transform infrared spectroscopy (FT-IR) studies and comparison of in vitro dissolution profile of developed formulation with the innovator were performed. Results: Metformin hydrochloride and gliclazide showed sustained release of drug by diffusion mechanism and followed first-order kinetics. The best formulation of metformin hydrochloride (M7) and gliclazide (G8) show 99.93% and 99.65% of drug release in 24 h respectively. The similarity factor (f2) was 79.95 for metformin hydrochloride and 73.62 for gliclazide when compared with the innovator. Conclusion: The monolith diffusion-controlled bilayer tablets of metformin hydrochloride and gliclazide offer improved patient compliance and convenience with better postprandial hyperglycemic control with once-a-day dosing. The sustained release of the drug up to 24 h regulate antidiabetic activity round the clock with minimal side effects.


2021 ◽  
Vol 18 ◽  
Author(s):  
Mohsina Shaikh ◽  
Neha Desai ◽  
Munira Momin ◽  
Lokesh Kumar Bhatt

Objective: The objective of this study was to develop and optimize a microflora-triggered colon targeted sustained-release dosage form using gum ghatti (GG) and hydroxypropyl methylcellulose (HPMC K100). Methods: GG and HPMC K100 were used to prepare microflora triggered colon targeted sustained-release dosage form. For evaluation, two different tablets comprising metoprolol succinate and mesalamine as an active ingredient were used with the objective of developing a platform technology for various categories of drugs. The tablets were coated with Eudragit® L100 and Eudragit® S100 to provide enteric coating and evaluated for hardness, thickness, friability, weight variation, disintegration, and drug content. In vitro release studies for the prepared tablets were carried out mimicking the physiological transit time. Further, the effects of microflora were evaluated using rat cecal content. Results: The in vitro dissolution profile of coated matrix tablets showed that 86.03±0.43% of metoprolol succinate and 80.26±0.67% of mesalamine were released at the end of 12 h. The ex vivo dissolution profile of coated matrix tablets showed that 96.50±0.27% of metoprolol succinate and 92.58±0.39% of mesalamine were released at the end of 12 h in the presence of rat ceacal content. The developed formulation was stable when subjected to the standard ICH stability study conditions. Conclusion: The result of this study showed that gum ghatti together with hydroxypropyl methylcellulose could be successfully used for the preparation of microflora triggered colon targeted matrix tablets.


2021 ◽  
Vol 12 (8) ◽  
pp. 46-51
Author(s):  
Jeetendra Kushwaha ◽  
Dev Sharan Chaturvedi ◽  
Manisha Verma ◽  
Kuldeep Kumar Tiwari ◽  
Neelesh Anuragi

Increased complications and costs of marketing of innovative drugs focused greater attention to the development of sustained release (SR) or controlled release (CR) drug delivery systems. Trazodone Hydrochloride (TRZ) is a well-known chemical compound that is used as an antidepressant that belongs to a selective serotonin reuptake inhibitor (SARI). The objective of present work was to develop and evaluated oral sustained release matrix tablet of TRZ. Pre-compression parameters were evaluated. The tablets were evaluated for post-compression parameters such as thickness, hardness, average weight, friability and In vitro release studies. No interactions were observed between TRZ and excipients from the Fourier transform infrared spectroscopy. The present research work was successful in improving the efficacy TRZ oral therapy as the drug release was extended for 12 hours thus reducing dosing frequency thereby improving patient compliance. The study also revealed the applicability of HPMC K-15, Gaur gum and PVP K30 as rate-controlling polymers in matrix tablets. The hydrophilic matrix of HPMC alone cannot control the release TRZ effective for 12 h while when combined with guar gum, may slow down the release of the drug and therefore, can be successfully employed for the formulation of matrix tablets SR. It may be concluded from the study that; the optimized formulation F-8 was shown maximum drug release 99.12 % in 12 h of dissolution. The release kinetic data of formulation F-8 shown first order release kinetics (R2 = 0.980).


Author(s):  
Poreddy Srikanth Reddy ◽  
Penjuri Subhash Chandra Bose ◽  
Vuppula Sruthi ◽  
Damineni Saritha

The aim of the present work was to prepare floating tablets of galantamine HBr using sodium alginate and xanthan gum as matrix forming carriers. Galantamine HBr is used for the treatment of mild to moderate Alzheimer's disease and various other memory impairments, in particular those of vascular origin. The matrix tablet formulations were prepared by varying the concentrations of sodium alginate and xanthan gum. The tablets were prepared by direct compression technique using PVP K-30 as a binder and sodium bicarbonate for development of CO2. The prepared matrix tablets were evaluated for properties such as hardness, thickness, friability, weight variation, floating lag time, compatibility using DSC and FTIR. In vitro dissolution was carried out for 12 hrs in 0.1N HCl at 37±0.5 ºC using USP paddle type dissolution apparatus. It was noted that, all the prepared formulations had desired floating lag time and constantly floated on dissolution medium by maintaining the matrix integrity. The drug release from prepared tablets was found to vary with varying concentration of the polymers, sodium alginate and xanthan gum. From the study it was concluded that floating drug delivery system for galantamine HBr can be prepared by using sodium alginate and xanthan gum as a carrier.


2011 ◽  
Vol 47 (3) ◽  
pp. 545-553 ◽  
Author(s):  
Sathis Kumar Dinakaran ◽  
Santhos Kumar ◽  
David Banji ◽  
Harani Avasarala ◽  
Venkateshwar Rao

The purpose of this research study was to establish ziprasidone HCl NR 40 mg and trihexyphenidyl HCl SR 4mg in the form of bi-layer sustained release floating tablets. The tablets were prepared using sodium HPMC K4M / HPMC K15M as bio-adhesive polymers and sodium bicarbonate acting as a floating layer. Tablets were evaluated based on different parameters such as thickness, hardness, friability, weight variation, in vitro dissolution studies, content of active ingredient and IR studies. The physico-chemical properties of the finished product complied with the specifications. In vitro release from the formulation was studied as per the USP XXIII dissolution procedure. The formulations gave a normal release effect followed by sustained release for 12 h which indicates bimodal release of ziprasidone HCl from the matrix tablets. The data obtained was fitted to Peppas models. Analysis of n values of the Korsmeyer equation indicated that the drug release involved non-diffusional mechanisms. By the present study, it can be concluded that bi-layer tablets of ziprasidone HCl and trihexyphenidyl HCl will be a useful strategy for extending the metabolism and improving the bioavailability of Ziprasidone HCl and Trihexyphenidyl HCl.


Sign in / Sign up

Export Citation Format

Share Document