scholarly journals DEVELOPMENT AND IN VITRO–IN VIVO EVALUATION OF GASTRORETENTIVE FLOATING TABLETS OF AN ANTIRETROVIRAL AGENT RITONAVIR

Author(s):  
SHIREESH KIRAN R ◽  
CHANDRA SHEKAR B ◽  
NAGENDRA BABU B

Objective: The present research work concerns the development of the extended release of Ritonavir floating matrix tablets, designed to prolong the gastric residence time, increase the drug bioavailability, and diminish the side effects of irritating drugs. Methods: The floating tablets of Ritonavir were prepared by direct compression method using different grades of hydroxypropyl methylcellulose (HPMC), crospovidone, Polyox WSR 303, and sodium bicarbonate, as gas generating agent. Evaluation parameters and in vivo radiographic studies were conducted in suitable model. Results: Among all formulations, F21 was chosen as optimized formulation based on evaluation parameters such as floating lag time (33 s), total floating time (>24 h), and in vitro dissolution studies. From in vitro dissolution studies, the optimized formulation F21 and marketed product were shown 98.67% and 91.46±5.02% of drug release, respectively. The main appliance of medication discharge follows zero-order kinetics and non- Fickian transport by coupled diffusion and erosion. In vivo experiments maintained the potentials in extending the gastric residence time in the fasted state in beagle dogs. The mean gastric residence time of the optimized formulation found to be 330 min±40 in the stomach, where longer gastric residence time is an important condition for prolonged or controlled drug release and also for enhanced bioavailability. Conclusion: From in vitro and in vivo radiographic studies, Ritonavir floating tablets estimated to provide novel choice for harmless, inexpensive, and extended release for the effective management of AIDS.

2011 ◽  
Vol 61 (2) ◽  
pp. 217-226 ◽  
Author(s):  
Komuravelly Someshwar ◽  
Kalyani Chithaluru ◽  
Tadikonda Ramarao ◽  
K. Kumar

Formulation and evaluation of effervescent floating tablets of tizanidine hydrochloride Tizanidine hydrochloride is an orally administered prokinetic agent that facilitates or restores motility through-out the length of the gastrointestinal tract. The objective of the present investigation was to develop effervescent floating matrix tablets of tizanidine hydrochloride for prolongation of gastric residence time in order to overcome its low bioavailability (34-40 %) and short biological half life (4.2 h). Tablets were prepared by the direct compression method, using different viscosity grades of hydroxypropyl methylcellulose (HPMC K4M, K15M and K100M). Tablets were evaluated for various physical parameters and floating properties. Further, tablets were studied for in vitro drug release characteristics in 12 hours. Drug release from effervescent floating matrix tablets was sustained over 12 h with buoyant properties. DSC study revealed that there is no drug excipient interaction. Based on the release kinetics, all formulations best fitted the Higuchi, first-order model and non-Fickian as the mechanism of drug release. Optimized formulation (F9) was selected based on the similarity factor (f2) (74.2), dissolution efficiency at 2, 6 and 8 h, and t50 (5.4 h) and was used in radiographic studies by incorporating BaSO4. In vivo X-ray studies in human volunteers showed that the mean gastric residence time was 6.2 ± 0.2 h.


Author(s):  
R. Shireesh Kiran ◽  
B. Chandra Shekar ◽  
B. Nagendra Babu

In the current study, gastro-retentive tablets of Ritonavir was developed to increase its oral bioavailability using hydrophilic polymers HPMC K 4M, K 15M, and K 100M as release retarding agents. Polyox WSR 303 was chosen as resin, sodium bicarbonate was used as effervescent agents. The tablets were prepared by direct compression method and FTIR studies revealed that there is no interaction between the drug and polymers used for the formulation. Among all the formulations F21 containing HPMC K 100M, Crospovidone, Polyox WSR 303 and sodium bicarbonate, as gas generating agent was choosen as optimized formulation based on the evaluation parameters, floating lag time (33 sec) and total floating time (>24 h) and in vitro dissolution studies. From in vitro dissolution studies, the optimized formulation F21 and marketed product was shown 98.67% and 95.09 ± 5.01% of drug release respectively. From in vivo bioavailability studies, after oral administration of floating tablet containing 100 mg Ritonavir, the Cmax, Tmax, and AUC0–∞ of optimized gastroretentive formulation were found to be 30.11 ± 1.16μg/mL, 8.00±1.23 h and 173 ± 26.34μg*h/ml, respectively. Cmax and AUC values of optimized formulation were found to be significantly higher than of marketed product, where longer gastric residence time is an important condition for prolonged or controlled drug release and also for improved bioavailability.


Drug Research ◽  
2017 ◽  
Vol 67 (07) ◽  
pp. 412-418 ◽  
Author(s):  
Arun Reddy ◽  
Narendar Reddy

AbstractClarithromycin (CM), a broad spectrum macrolide antibiotic used to eradicate H. pylori in peptic ulcer. Clarithromycin (CM) is well absorbed from the gastrointestinal tract, but has a bioavailability of 50% due to rapid biodegradation. The aim of this investigation was to increase the gastric residence time, and to control the drug release of clarithromycin by formulating into multiple unit floating mini-tablets. Floating tablets were prepared by using direct compression method with HPMC K4M and Polyox WSR 1105 as release retarded polymers and sodium bicarbonate as gas generating agent. The prepared mini-tablets were evaluated for thickness, weight variation, friability, hardness, drug content, in vitro buoyancy, swelling studies, in vitro dissolution studies by using modified Rossett-Rice test and in vivo radiographic studies in healthy human volunteers in fasting conditions. DSC analysis revealed that no interaction between drug and excipients. All the physical parameters of the tablets were within the acceptable limits. The optimized formulation (F6) had showed controlled drug release of 99.16±3.22% in 12 h, by zero-order release kinetics, along with floating lag time of 9.5±1.28 s and total floating time of 12±0.14 h. X-ray imaging studies revealed that in vivo gastric residence time of clarithromycin floating mini-tablet in the stomach was about 3.5 h. The results demonstrated that the developed floating mini-tablets of clarithromycin caused significant enhancement in gastric retention time along with sustained effect and increased oral bioavailability.


Author(s):  
Poornima P ◽  
Abbulu K ◽  
Mukkanti K

Objective: Current research concerns the expansion of repaglinide matrix floating tablets, which are designed to prolong the gastric residence time, increase the drug bioavailability, and diminish the side effects.Methods: Different formulations of repaglinide floating tablets were prepared with different grades of hydroxypropyl methylcellulose (HPMC) and other agents. Evaluation parameters and in vivo bioavailability studies were conducted in the suitable model.Results: Among all the formulations, F21 containing HPMC K1500 PH PRM, Polyox WSR 303, and sodium bicarbonate, as gas generating agent was selected as optimized formulation based on physicochemical properties, floating lag time (36 s), and total floating time (>24 h). From in vitro dissolution studies, the optimized formulation F21 showed drug release of 98.92±5.19% within 24 h whereas 95.09±5.01% of the drug was released from the marketed product within 1 h.Conclusion: From in vitro and in vivo bioavailability studies repaglinide floating tablets expected to give a new choice for safe, economical, and increased bioavailability for effective management of diabetes mellitus.


Author(s):  
Poornima P ◽  
Abbulu K ◽  
Mukkanti K

The present investigation concerns the development of the repaglinide floating matrix tablets, which after oral administration are designed to prolong the gastric residence time, increase the drug bioavailability and diminish the side effects of irritating drugs. FTIR studies revealed that there is no interaction between the drug and polymers used for the formulation. Among all the formulations F21 containing HPMC K1500 PH PRM, Polyox WSR-303 and Sodium bicarbonate, as gas generating agent was selected as optimized formulation based on physico chemical properties, floating lag time (36 sec) and total floating time (>24 h). From in vitro dissolution studies, the optimized formulation F21 showed drug release of 98.92±5.19% within 24h whereas 95.09±5.01% of the drug was released from the marketed product within 1h. The major mechanism of drug release follows zero order kinetics and non-Fickian transport by coupled diffusion and erosion. In vivo experiments supported the expectations in prolonging the gastric residence time in the fasted state in beagle dogs. The mean gastric residence time for the tested tablets was 270 min±60. This result is encouraging, because a longer gastric residence time is an important condition for higher bioavailability of the drugs included in the prolonged or controlled release dosage forms.


2019 ◽  
Vol 9 (4) ◽  
pp. 299-307
Author(s):  
Kuldeep Singh ◽  
Subheet K. Jain ◽  
Karan Razdan ◽  
Harmanpreet Singh ◽  
Nikhil S. Sahajpal ◽  
...  

Background and Objective: Ferrous ascorbate (FA) is preferentially absorbed from the upper gastrointestinal (GI) track, and has low bioavailability due to less residence time of FA in upper GI track. In addition, FA has low solubility and stability at higher pH. The aim of this study was to prepare gastro-retentive tablets of FA in order to increase its gastric residence time and hence, bioavailability. Methods: Floating tablets of FA were prepared by wet granulation method using different retarding polymers, Povidone K30 as binder and sodium bicarbonate as effervescent agent. The prepared floating tablets were compared with immediate release (IR) tablets and characterized in detail for in vitro and in vivo studies. Results: In-vitro drug release study of the optimized batch showed 96% drug release in 12 h in 0.1 N HCl. The mechanism of drug release from the floating tablets was non-fickian and release kinetics was best fit in peppas model. The gastric retention time of optimized was found to be significantly increased (6 h) in comparison with IR tablet (<1h). Further, bioavailability was also found significantly increased (>70%) in comparison with IR tablet (15-30%). X-ray studies carried on healthy rabbits suggested that the optimized batch remained buoyant in gastric contents up to 6 h and pharmacokinetic study showed sustained released behaviour of optimized batch in comparison to conventional IR tablet. Conclusion: Floating tablet of FA improved the bioavailability of iron by increasing its gastric residence time, hence it could be a better approach for treating iron deficiency and help in improving the patient compliance than IR tablets.


2017 ◽  
Vol 15 (2) ◽  
pp. 203-208
Author(s):  
Md Haider Ali ◽  
Mohiuddin Ahmed Bhuiyan ◽  
Md Selim Reza ◽  
Samira Karim

The aim of this research was to develop and evaluate gastric floating tablets of salbutamol sulphate. The oral delivery of anti-asthmatic salbutamol sulphate tablets were facilitated by preparing floating dosage form which could increase its absorption in the stomach by increasing the gastric residence time of the drug. Floating tablets were formulated by using different polymers like carbopol, xanthan gum, HPMC-K4 MCR and HPMC- K100 MCR with different proportions. A comparative study of normal effervescent tablets of salbutamol sulphate had also been done. The prepared tablets were evaluated for all their physicochemical properties and in vitro buoyancy study. In vitro dissolution studies of the formulations were done in pH 6.8 phosphate buffer using USP apparatus 2 (paddle method) at 50 rpm. Percent drug release of the formulations (F-1 to F-11) was from 87.34%- 99.12% after 12 hours. From the results, F-11 was selected as an optimized formulation based on 12 h drug release which showed minimal floating lag time and maximum floating time. On the other hand, 100% drug was released within 2 hours from the F-12 of effervescent salbutamol sulphate tablets in which polymer was absent while gas generating sodium bicarbonate and citric acid were present. The results of the study were consistent and may encourage formulating similar dosage form with other drugs.Dhaka Univ. J. Pharm. Sci. 15(2): 203-208, 2016 (December)


Author(s):  
Sunil T. Galatage ◽  
Suresh G. Killedar ◽  
Rushikesh B. Katakar ◽  
Ravindra B. Kumbhar ◽  
Maya Sharma ◽  
...  

The objective of the present research work is to develop an ideal floating drug delivery system of nizatidine to increase the gastric residence time in stomach. To overcome the short half life and lower bioavailability of drug in tablet form we developed the drug in the form of effervescent floating tablet containing HPMC K100 and sodium bicarbonate by direct compression methodology. The prepared effervescent floating tablets were characterized by thickness, weight variation, hardness, friability, drug content uniformity, in vitro buoyancy time, swelling test, in vitro study and stability study and found that all formulations showed satisfactory results with enhanced half life and bioavailability that is among all formulations F1 formulation exhibited good drug release of 95.03% & has shown floating lag time 55 sec. Finally, it was concluded that formulations of nizatidine floating tablet were successfully prepared and found prolonged drug release for 12 hours thereby getting enhanced bioavailability, patient compliance by reducing dose frequency and gastric residence time.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Haarika B ◽  
Jyothi Sri S ◽  
K Abbulu

The purpose of present investigation was to develop floating matrix tablets of gemifloxacin mesylate, which after oral administration could prolong the gastric residence time, increase the drug bioavailability and diminish the side effects of irritating drugs. Tablets containing drug, various viscosity grades of hydroxypropyl methylcellulose such as HPMC K4M and HPMC K15M as matrix forming agent, Sodium bicarbonate as gas-forming agent and different additives were tested for their usefulness in formulating gastric floating tablets by direct compression method. The physical parameters, in vitro buoyancy, release characteristics and in vivo radiographic study were investigated in this study. The gemifloxacin mesylate floating tablets were prepared using HPMC K4M polymer giving more sustained drug release than the tablet containing HPMC K15M. All these formulations showed floating lag time of 30 to 47 sec and total floating time more than 12 h. The drug release was decreased when polymer concentration increases and gas generating agent decreases. Formulation that contains maximum concen-tration of both HPMC K15M and sodium bicarbonate (F9) showing sufficiently sustained with 99.2% of drug release at 12 h. The drug release from optimized formulation follows Higuchi model that indicates the diffusion controlled release. The best formulation (F9) was selected based on in vitro characteristics and used in vivo radiographic studies by incorporating barium sulphate as a radio-opaque agent and the tablet remained in the stomach for about 6 h.   


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 507
Author(s):  
Isabel Gonzalez-Alvarez ◽  
Marival Bermejo ◽  
Yasuhiro Tsume ◽  
Alejandro Ruiz-Picazo ◽  
Marta Gonzalez-Alvarez ◽  
...  

The purpose of this study was to predict in vivo performance of three oral products of Etoricoxib (Arcoxia® as reference and two generic formulations in development) by conducting in vivo predictive dissolution with GIS (Gastro Intestinal Simulator) and computational analysis. Those predictions were compared with the results from previous bioequivalence (BE) human studies. Product dissolution studies were performed using a computer-controlled multicompartmental dissolution device (GIS) equipped with three dissolution chambers, representing stomach, duodenum, and jejunum, with integrated transit times and secretion rates. The measured dissolved amounts were modelled in each compartment with a set of differential equations representing transit, dissolution, and precipitation processes. The observed drug concentration by in vitro dissolution studies were directly convoluted with permeability and disposition parameters from literature to generate the predicted plasma concentrations. The GIS was able to detect the dissolution differences among reference and generic formulations in the gastric chamber where the drug solubility is high (pH 2) while the USP 2 standard dissolution test at pH 2 did not show any difference. Therefore, the current study confirms the importance of multicompartmental dissolution testing for weak bases as observed for other case examples but also the impact of excipients on duodenal and jejunal in vivo behavior.


Sign in / Sign up

Export Citation Format

Share Document