scholarly journals A REVIEW ON PHARMACOLOGY AND THERAPEUTIC EFFECTS OF EMPAGLIFLOZIN IN PATIENTS WITH TYPE 2 DIABETES MELLITUS

Author(s):  
AJAY CHADEVE

Empagliflozin, a sodium glucose cotransporter 2 inhibitor, a newer class of antihyperglycemic agent, which offers the convenience of once-daily oral administration and carries a low inherent risk of hypoglycemia as a result of its unique mechanism of action, enabling it to be used as monotherapy and as an adjunct with other antidiabetic drugs. Empagliflozin has a unique mechanism of action by inhibiting glucose and sodium reabsorption in the proximal tubule of the kidney; they induce urinary glucose excretion and natriuresis. In patients with diabetes, empagliflozin results in glucose lowering, blood pressure (BP) reduction and weight loss. Empagliflozin reduced cardiovascular morbidity and mortality in patient with type 2 diabetes mellitus and established cardiovascular disease in the EMPA-REG OUTCOME trial®. The recommended starting dosage of empagliflozin is 10 mg daily. The dosage may be increased to a maximum of 25 mg/day in patients tolerating empagliflozin 10 mg/day. The most common adverse effect observed with empagliflozin (sodium glucose cotransporter 2 inhibitors) is an increment in mycotic genital infections. In this review article, we discussed the pharmacological properties, therapeutic effects, and adverse events that are associated with the administration of empagliflozin in patients with type 2 diabetes mellitus. In conclusion, empagliflozin provides greater therapeutic benefits in the management of type 2 diabetes mellitus and reduce the associated cardiovascular risk factors such as blood pressure (BP) and weight.

2014 ◽  
Vol 17 (1) ◽  
pp. 81-84 ◽  
Author(s):  
Elena Valer'evna Biryukova

The introduction of DPP-4 inhibitors substantially increased therapeutic options for type 2 diabetes mellitus (T2DM). The unique mechanism of action allows using these agents both as monotherapy and in combination with conventional anti-diabetes drugs. Evidence base for efficacy and safety of DPP-4 inhibitors deepens every year, but to date only a few studies addressed direct comparison between individual agents within this pharmacological class. Current article presents data from the studies comparing vildagliptin with other DPP-4 inhibitors, as well as GLP-1 agonists.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Kerolos Wagdy

[no abstract - showing first paragraph]Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a relatively new class of antihyperglycemic medication that are well established for the management of type-2 diabetes mellitus (DM). They have a unique mechanism of action that targets the kidneys through inhibition of 90% of glucose reabsorption.


2020 ◽  
Vol 2020 (2) ◽  
Author(s):  
Kerolos Wagdy ◽  
Peter Selwanos

[no abstract - showing first paragraph of article]Sodium-glucose co-transporter-2 (SGLT2) inhibitors are relatively new class of antihyperglycemic medication that is well established in the management of type 2 diabetes mellitus (DM). It has a unique mechanism of action that targets the kidneys through inhibiting 90% of glucose reabsorption.


2019 ◽  
Vol 19 (20) ◽  
pp. 1818-1849 ◽  
Author(s):  
Ban Liu ◽  
Yuliang Wang ◽  
Yangyang Zhang ◽  
Biao Yan

: Type 2 diabetes mellitus is one of the most common forms of the disease worldwide. Hyperglycemia and insulin resistance play key roles in type 2 diabetes mellitus. Renal glucose reabsorption is an essential feature in glycaemic control. Kidneys filter 160 g of glucose daily in healthy subjects under euglycaemic conditions. The expanding epidemic of diabetes leads to a prevalence of diabetes-related cardiovascular disorders, in particular, heart failure and renal dysfunction. Cellular glucose uptake is a fundamental process for homeostasis, growth, and metabolism. In humans, three families of glucose transporters have been identified, including the glucose facilitators GLUTs, the sodium-glucose cotransporter SGLTs, and the recently identified SWEETs. Structures of the major isoforms of all three families were studied. Sodium-glucose cotransporter (SGLT2) provides most of the capacity for renal glucose reabsorption in the early proximal tubule. A number of cardiovascular outcome trials in patients with type 2 diabetes have been studied with SGLT2 inhibitors reducing cardiovascular morbidity and mortality. : The current review article summarises these aspects and discusses possible mechanisms with SGLT2 inhibitors in protecting heart failure and renal dysfunction in diabetic patients. Through glucosuria, SGLT2 inhibitors reduce body weight and body fat, and shift substrate utilisation from carbohydrates to lipids and, possibly, ketone bodies. These pleiotropic effects of SGLT2 inhibitors are likely to have contributed to the results of the EMPA-REG OUTCOME trial in which the SGLT2 inhibitor, empagliflozin, slowed down the progression of chronic kidney disease and reduced major adverse cardiovascular events in high-risk individuals with type 2 diabetes. This review discusses the role of SGLT2 in the physiology and pathophysiology of renal glucose reabsorption and outlines the unexpected logic of inhibiting SGLT2 in the diabetic kidney.


2021 ◽  
Vol 12 ◽  
pp. 204201882110002
Author(s):  
Taeang Arai ◽  
Masanori Atsukawa ◽  
Akihito Tsubota ◽  
Shigeru Mikami ◽  
Hiroki Ono ◽  
...  

Background: Although sodium-glucose cotransporter 2 inhibitors (SGLT2-Is) improve not only glycemic control but also liver inflammation and fatty changes in patients with non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM), its sustainability and effect on liver fibrosis have remained unclear. The current study aimed to clarify the effects of 48-week SGLT2-I therapy on liver inflammation, fatty changes, and fibrosis in NAFLD patients with T2DM. Methods: This study evaluated the effects of SGLT2-I on NAFLD, including liver fibrosis assessed via transient elastography, in 56 patients with NAFLD who received SGLT2-I for 48 weeks. Moreover, changes in each clinical parameter between patients receiving SGLT2-I (the SGLT2-I group) and those receiving other oral hypoglycemic agents (OHAs) (the non-SGLT2-I group) were compared, using 1:1 propensity score matching to adjust for baseline factors. Results: The SGLT2-I group exhibited a significant decrease in controlled attenuation parameter (312 dB/m at baseline to 280 dB/m at week 48) and liver stiffness measurement (9.1–6.7 kPa) ( p < 0.001 for both). After propensity score matching (44 patients each in the SGLT2-I and non-SGLT2-I groups), no significant difference in HbA1c decrease was observed between the two groups. However, compared with the non-SGLT2-I group, the SGLT2-I group showed a significant decrease in body weight ( p < 0.001), alanine aminotransferase ( p = 0.02), uric acid ( p < 0.001), and Fibrosis-4 (FIB-4) index ( p = 0.01) at week 48. The improvement in FIB-4 index, defined as a ⩾10% decline from baseline at week 48, was 56.8% (25/44) in the SGLT2-I group and 20.5% (9/44) in the non-SGLT2-I group ( p < 0.001). Conclusion: SGLT2-Is improved not only glycemic control but also liver fatty infiltration and fibrosis in patients with NAFLD and T2DM, suggesting their possible superiority to other OHAs concerning these effects.


Sign in / Sign up

Export Citation Format

Share Document