scholarly journals RADITYA ISWANDANA, KURNIA SARI SETIO PUTRI, RANDIKA DWIPUTRA, TRYAS YANUARI, SANTI PURNA SARI, JOSHITA DJAJADISASTRA

2017 ◽  
Vol 9 (5) ◽  
pp. 109
Author(s):  
Raditya Iswandana ◽  
Kurnia Sari Setio Putri ◽  
Randika Dwiputra ◽  
Tryas Yanuari ◽  
Santi Purna Sari ◽  
...  

Objective: Drug delivery to the colon via oral route can be directly treated a variety of diseases in the colon, such as fibrosis. Tetrandrine is a drug that has anti-fibrosis effects. In this study, chitosan-tripolyphosphate (TPP) beads containing tetrandrine was made and evaluated for in vitro release profile and in vivo targeted test.Methods: Chitosan-TPP tetrandrine beads were prepared by ionic gelation method with variation in sodium tripolyphosphate concentration: 3% (Formula 1), 4% (Formula 2), and 5% (Formula 3). All formulae were characterized for its morphology, particle size, moisture content, process efficiency, entrapment efficiency, thermal character, crystallinity, and swelling. Then, the best formula was coated with HPMCP HP-55, CAP, Eudragit L100-55, or Eudragit L100 prior to drug release profile in vitro and in vivo test.Results: Beads from all formulae had an average size: 920.50±0.04 µm, 942.21±0.08 µm, and 1085.95±0.03 µm; Water content: 7.28±0.003%, 5.64±0.005%, and 6.84±0.004%; Process efficiency: 29.70%, 28.96%, and 29.70%; Entrapment efficiency: 16.20±0.63%, 17.02±0.37%, and 20.42±0.70% for Formula 1, 2, and 3, respectively. In addition, the results of in vitro cumulative drug release were 67.36%, 76.04%, 83.12%, 83.21%, 40.16%, 37.98%, 45.86%, 41.71% for Formula 3A-3H, respectively.Conclusion: It can be concluded that Formula 3D (CAP 15%) was chosen as a formulation with the best in vitro profile. Moreover, the in vivo targeted test showed that Formula 3D was able to deliver the beads to the intestine compared to the control beads.

Author(s):  
B. Senthilnathan ◽  
A. Maheswaran ◽  
K. Gopalasatheeskumar ◽  
K. Masilamani ◽  
Raihana Z Edros

In this work, polymeric nanoparticles containing Pregabalin was prepared and optimized the ideal concentration of polymer based on its in vitro release profile for a period of 24hrs.The nanoparticles were prepared by solvent displacement method using various concentrations of Eudragit S100 (EPNP1-EPNP5). The prepared nanoparticles were characterized for its particle size, zeta potential, drug content, entrapment efficiency and invitro drug release profile. The preformulation study results confirmed the compatibility between the drug and other excipients used in the formulation. The optimized formulation was selected based on its particle size, entrapment efficiency and in vitro drug release profile. The formulation which contains 300mg of Eudragit S100 (EPNP5) was selected as optimized concentration for the controlled release of Pregabalin for a period of 24hrs.


Author(s):  
Mohini Sihare ◽  
Rajendra Chouksey

Aim: Nateglinide is a quick acting anti-diabetic medication whose potent activity lasts for a short duration. One of the dangerous side effects of nateglinide administration is rapid hypoglycemia, a condition that needs to be monitored carefully to prevent unnecessary fatalities. The aim of the study was to develop a longer lasting and slower releasing formulation of nateglinide that could be administered just once daily. Methods: Matrix tablets of nateglinide were prepared in combination with the polymers hydroxypropylmethylcellulose (HPMC), eudragits, ethyl cellulose and polyethylene oxide and the formulated drug release patterns were evaluated using in vitro and in vivo studies. Conclusion: Of the seventeen formulated matrix tablets tested, only one formulation labelled HA-2 that contained 15% HPMC K4M demonstrated release profile we had aimed for. Further, swelling studies and scanning electron microscopic analysis confirmed the drug release mechanism of HA-2. The optimized formulation HA-2 was found to be stable at accelerated storage conditions for 3 months with respect to drug content and physical appearance. Mathematical analysis of the release kinetics of HA-2 indicated a coupling of diffusion and erosion mechanisms. In-vitro release studies and pharmacokinetic in vivo studies of HA-2 in rabbits confirmed the sustained drug release profile we had aimed for. Keywords: Hydroxypropylmethylcellulose, Matrix tablets, Nateglinide, Sustained release


Author(s):  
EMAN A. MAZYED ◽  
SHERIN ZAKARIA

Objective: The present investigation aims to formulate and evaluate proniosomes of clopidogrel bisulphate for improving its dissolution characteristics. Methods: The slurry method was used for the preparation of proniosomes of clopidogrel using cholesterol, sorbitan monostearate (Span 60) and maltodextrin as a carrier. Clopidogrel proniosomes were evaluated for their entrapment efficiency and in vitro drug release. The best formula (F1) that achieved maximum drug release was further evaluated by measurement of the angle of repose, morphological examination, determination of vesicle size, determination of zeta potential, Fourier transform infrared spectroscopy and differential thermal analysis. The in vivo behavior of the selected proniosomal formula (F1) was studied by measuring the antiplatelet activity in adult male mice. Results: The entrapment efficiency of clopidogrel proniosomes was in the range of 83.04±1.99 to 90.14±0.30. % drug released from proniosomal formulations was in the range of 79.73±0.35 to 97.70±1.10 % within 4 h. Clopidogrel proniosomes significantly enhanced the in vitro release of clopidogrel compared with the plain drug that achieved 61.77±2.22 % drug release. F1 significantly (p ≤ 0.001) increased the bleeding time and bleeding volume and significantly (p ≤ 0.05) prolonged prothrombin time and decreased prothrombin activity and increased the international normalized ratio (INR) compared to plain clopidogrel. Conclusion: The present investigation introduced proniosomes as a promising carrier for clopidogrel that could enhance its dissolution and pharmacological effect.


2019 ◽  
Vol 9 (2) ◽  
pp. 97-101
Author(s):  
Rinku Gonekar ◽  
Mohan Lal Kori

The objective of the present study is to develop colon targeted drug delivery system using dextrin (polysaccharide) as a carrier for Azathioprine.  Microspheres containing azathioprine, dextrin and various excipients were prepared by solvent evaporation technique. The prepared microsphere were evaluated by different methods parameters like particle size,  drug entrapment efficiency, percentage yield, shape and surface morphology  and in vitro drug release study. Drug release profile was evaluated in simulated gastric, intestinal fluid and simulated colonic fluid. Best formulation was decided on the basis drug release profile in simulated gastric, intestinal fluid and simulated colonic fluid. In dextrin based microspheres, dextrin as a carrier was found to be suitable for targeting of Azathioprine for local action in the site of colon. Dextrin microspheres released 95-99% of azathioprine in simulated colonic fluid with 4% human fecal matter solution. The results of in-vitro studies of the azathioprine microspheres indicate that for colon targeting dextrin are suitable carriers to deliver the drug specifically in the colonic region. Dextrin based azathoprine microspheres showed no significance change in particle size and % residual upon storage at 5 ± 3ºC, 25 ± 2ºC/60 ± 5% RH (room temperature) and 40 ± 2ºC/75 ±5%RH humidity for three months. Keywords: azathioprine, microsphere, dextrin, colon specific drug delivery.


2020 ◽  
Vol 17 ◽  
Author(s):  
Bhaskar Kurangi ◽  
Sunil Jalalpure ◽  
Satveer Jagwani

Aim: The aim of the study was to formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC) through topical application. Background: Resveratrol (RV) is a nutraceutical compound that has exciting pharmacological potential in different diseases including cancers. Many studies of resveratrol have been reported for anti-melanoma activity. Due to its low bioavailability, the activities of resveratrol are strongly limited. Hence, an approach with nanotechnology has been done to increase its activity through transdermal drug delivery. Objective: To formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC). To evaluate resveratrol-loaded cubosomal gel (RC-Gel) for its topical application. Methods: RC was formulated by homogenization technique and optimized using a 2-factor 3-level factorial design. Formulated RCs were characterized for particle size, zeta potential, and entrapment efficiency. Optimized RC was evaluated for in vitro release and stability study. Optimized RC was further formulated into cubosomal gel (RC-Gel) using carbopol and evaluated for drug permeation and deposition. Furthermore, developed RC-Gel was evaluated for its topical application using skin irritancy, toxicity, and in vivo local bioavailability studies. Results: The optimized RC indicated cubic-shaped structure with mean particle size, entrapment efficiency, and zeta potential were 113±2.36 nm, 85.07 ± 0.91%, and -27.40 ± 1.40 mV respectively. In vitro drug release of optimized RC demonstrated biphasic drug release with the diffusion-controlled release of resveratrol (RV) (87.20 ± 2.25%). The RC-Gel demonstrated better drug permeation and deposition in mice skin layers. The composition of RC-Gel has been proved non-irritant to the mice skin. In vivo local bioavailability study depicted the good potential of RC-Gel for skin localization. Conclusion: The RC nanoformulation proposes a promising drug delivery system for melanoma treatment simply through topical application.


2021 ◽  
Vol 18 ◽  
Author(s):  
Sara Salatin ◽  
Mitra Jelvehgari

Background: Background: Metformin hydrochloride (MH) is an oral anti-hyperglycemic agent belonging to the biguanide class of drugs. Objective: The present study involves the formulation and evaluation of gastro-retentive floating microparticles containing MH as a model drug for the prolongation of absorption time. Methods: Three levels of a three-factor, Box-Behnken design were used to evaluate the critical formulation variables. Microparticles were prepared using a water-in-oil-in-water double-emulsion solvent evaporation method and examined in terms of production yield, particle size, entrapment efficiency, floating ability, morphology, FTIR (Fourier transform infrared spectroscopy), and in vitro drug release. Results: The optimum conditions for preparing MH microparticles were predicted to be the content of ethyl cellulose content (150 mg), poly (ε-caprolactone) (150 mg), and polyvinyl alcohol (1 %w/v). The optimized MH microparticles were found to be spherical with a mean size of 350.2 µm. Entrapment efficiency was 58.62% for microparticles. 63.94% of microparticles showed floating properties. The FTIR analysis confirmed no chemical linkage between microparticle components. In vitro release study showed a controlled release for up to 8h. Conclusion: These results demonstrated that MH microparticles, as a drug delivery system, may be useful to achieve a controlled drug release profile suitable for oral administration and may help to reduce the dose of drug and to improve patient compliance.


2017 ◽  
Vol 1 (1) ◽  
pp. 01-02
Author(s):  
Swathi Goli

The aim of the present study was to develop colon targeted matrix tablets of Metformin HCl using various conc. of selected polymers such as HPMC, Ethyl Cellulose Guar gum and combination of the same. Tablets were prepared by direct compression method and both pre-compression and post- compression parameters for all batches shows in the acceptable ranges. Short term accelerated stability studies was performed according to ICH guidelines temperature of 400±20 and relative humidity of 75%±5% RH to study any physical changes and chemical decomposition of drug, no formulation shown any physical or chemical changes. The compatibility of drugs, polymers and excipients were determined by FT-IR Spectroscopy results showed that the drug was compatible with polymers and all excipients. Dissolution studies were performed for 12 hours study in 1.2 pH for first 2 hrs then in 7.4 pH for next 3hrs followed by 6.8pH phosphate buffer at the temperature of 37±0.50C at 100rpm. The dissolution data so obtained was fitted to various mathematical kinetic models and the drug release followed mixed order and Higuchi’s model. To study release mechanism of drug from matrices the data were fitted to Koresmeyer-Peppas model and the release. In –vitro release profile of Metformin HCl from various polymers showed that drug increasing the conc. of polymers resulted in reduction in the release rate of drug (MTF1 to MTF12). Formulation containing combination of E.C-G.G, HPMC-G.G and E.C-HPMC showed drug release profile for MTF-12 about 38.72% after 12 hrs, MTF-11 about 40.66% after 12 hrs, for MTF-10 about 45.45% after 12 hrs. This is an indicative of retardation of drug release when polymer combination was changed. Results showed that the tablets with higher binding concentration showed minimum drug release. Combination of polymers shows greater retarding of drug release.


2017 ◽  
Vol 4 (2) ◽  
pp. 118
Author(s):  
Vasudha Bakshi ◽  
Swapna S. ◽  
Deepa Kumari Choudhary ◽  
Ch. Revanth ◽  
B. Sai KumarCh. Praveen ◽  
...  

Objective: The objective of the present research was to develop a matrix embedded floating tablet of Metoprolol for the sustained activity and prolongation of gastric residence time to improve the bioavailability of the drug. Metoprolol was chosen as a model drug because it is better absorbed in the stomach than the lower gastro intestinal tract.Methods: The experimental work was divided into pre-formulation studies, formulation development, and evaluation. Standardization of drug and excipients confirmed the authentication of the samples. Floating test were conducted for all formulations, In vitro dissolution studies were carried out in a dissolution testing apparatus-II, FTIR study was performed to interpret the drug ,excipient interaction.Results: Floating tests were also performed for 15 formulations and among them five formulations have passed the floating tests (F1, F3, F5, F7, and F14). The In-vitro release kinetics study of this tablet indicated sustained release for Metoprolol and followed zero order release and 95% drug in 8 h in vitro. The drug release profile of formulated product was compared with marketed product Metolar. The floating tablets extended the drug release up to 8 hours. The drug-polymer interaction was evaluated by fourier transform infrared spectroscopy (FTIR).Conclusions: F3 formulation showed the best floating results. The comparative study between F3 and Metolar (Marketed Product) showed the similar in vitro drug release profile. Thus, the optimzed formulation F-3 can be successfully used for the management of hypertension.


2019 ◽  
Vol 16 (7) ◽  
pp. 654-662 ◽  
Author(s):  
Smrithi Padmakumar ◽  
Deepthy Menon

Background: Prolonged chemodrug delivery to the tumor site is a prerequisite to maintaining its localised therapeutic concentrations for effective treatment of malignant solid tumors. Objective: The current study aims to develop implantable polymeric depots through conventional electrospinning for sustained drug delivery, specifically to the peritoneum. Methods: Non-woven electrospun mats were fabricated by simple electrospinning of Polydioxanone solution loaded with the chemodrug, Paclitaxel. The implants were subjected to the analysis of morphology, mechanical properties, degradation and drug release in phosphate buffer and patient-derived peritoneal drain fluid samples. In vivo studies were conducted by surgical knotting of these implants to the peritoneal wall of healthy mice. Results: Non-woven electrospun mats with a thickness of 0.65±0.07 mm, weighing ~ 20 mg were fabricated by electrospinning 15 w/v% polymer loaded with 10 w/w% drug. These implants possessing good mechanical integrity showed a drug entrapment efficiency of 87.82±2.54 %. In vitro drug release studies in phosphate buffer showed a sustained profile for ~4 weeks with a burst of 10 % of total drug content, whereas this amounted to >60% in patient samples. Mice implanted with these depots remained healthy during the study period. The biphasic drug release profile obtained in vivo showed a slow trend, with peritoneal lavage and tissues retaining good drug concentrations for a sustained period. Conclusion: The results indicate that non-woven electrospun mats developed from biodegradable Polydioxanone polymer can serve as ideal candidates for easily implantable drug depots to address the challenges of peritoneal metastasis in ovarian cancer.


2017 ◽  
Vol 9 (6) ◽  
pp. 21 ◽  
Author(s):  
Rajalakshmi S. V. ◽  
Vinaya O. G.

Objective: Aim of the study was to formulate, evaluate and optimize medicated Lip rouge containing acyclovir encapsulated inside a novel vesicular carrier, niosome so that the formulation can improve its membrane penetration. Formulating as a cosmetic Lip rouge formulation will also improve patient compliance in the treatment of herpes labialis.Methods: Acyclovir niosomes were prepared by thin film hydration method. Niosomes were evaluated and were optimized by considering the entrapment efficiency and in vitro release profile. The optimized niosomes were incorporated into lipstick, lip balm and lip rouge for selecting the best lip formulation. Based on the in vitro release profile, ease of application and properties of prepared formulations lip rouge was selected and further evaluations were carried out.Results: Among the six formulations of niosomes NF2 has showed 88.49 % entrapment efficiency and 86.97% cumulative drug release in 8 h. The formulation was optimized considering both entrapment efficiency and in vitro release. The optimized formulation of niosomes was incorporated into Lipstick, lip balm and lip rouge. The evaluation results of lipstick, lip balm and lip rouge for in vitro release suggested lip rouge as the best formulation. The percentage cumulative release of drug from optimized lip rouge at the end of 8 h was 84.77%. The percentage cumulative drug release in ex vivo studies for 8 h was 60.88 %.Conclusion: The results suggested that prepared lip rouge containing acyclovir niosomes can effectively deliver the drug than the marketed acyclovir cream and successful therapy of Recurrent Herpes labialis can be achieved.


Sign in / Sign up

Export Citation Format

Share Document