scholarly journals MOLECULAR DOCKING AND ADMET PREDICTION OF 5-BENZYLOXYTRYPTOPHAN AS A POTENTIAL RADIOPHARMACEUTICAL KIT FOR MOLECULAR IMAGING OF CANCER

Author(s):  
FAISAL MAULANA IBRAHIM ◽  
HOLIS ABDUL HOLIK ◽  
GHIFARI FARHAN HASIBUAN ◽  
ACHMAD HUSSEIN SUNDAWA KARTAMIHARDJA

Objective: This in silico study aims to determine the inhibition effect of 5-BOTP with various bifunctional chelating agents (BFCA); NOTA, DOTA, TETA, CTPA, H2CB-DO2A, H2CBTE2A against the antiporter site of the LAT1. Methods: The research method consisted of the binding mode of 5-BOTP and its derivatives with LAT1, the docking score, the analysis of preADMET, and the overview of Ro5 compatibility. Results: The results showed that 5-BOTP-NOTA and 5-BOTP-DOTA had interactions with the gating residue (Phe252, Trp257, Asn258, and Tyr259) on the antiporter site of LAT1. 5-BOTP-NOTA and 5-BOTP-DOTA affinity are around-11.50 and-9.14 kcal/mol, respectively. Conclusion: Based on this study, 5-BOTP-NOTA and 5-BOTP-DOTA are the new compounds that have the potential as a theranostic agent of cancer by inhibiting LAT1.

Author(s):  
Emilio Lamazares ◽  
Yudith Cañizares-Carmenate ◽  
Juan A. Castillo-Garit ◽  
Karel Mena-Ulecia

Arterial hypertension is a health problem that affects millions of people around the world. Particularly in Chile, according to the last health survey in 2019, 28.7% of the population had this condition, and arterial hypertension complications cause one in three deaths per year. In this work, we have used molecular simulation tools to evaluate new compounds designed in silico by our group as possible anti-hypertensive agents, taking Neutral Endopeptidase (NEP) as a target, a key enzyme in the arterial hypertension regulation at the level kidney. We use docking experiments, molecular dynamics simulation, free energy decomposition calculations (by MM-PBSA method), and ligand efficiency analysis to identify the best anti-hypertensive agent pharmacokinetic and toxicological predictions (ADME-Tox). The energetic components that contribute to the complexes stability are the electrostatic and Van der Waals components; however, when the ADME-Tox properties were analyzed, we conclude that the best anti-hypertensive candidate agents are Lig783 and Lig3444, taking Neutra Endopeptidase as a target.


2020 ◽  
Vol 10 (3) ◽  
pp. 134-135
Author(s):  
Sambhav Jain ◽  
Aditya Ganeshpurkar ◽  
Nazneen Dubey

Author(s):  
Shrinivas Dattatraya Joshi ◽  
Uttam Ashok More ◽  
Manoj Shripad Kulkarni ◽  
Kirankumar Nelaguddad ◽  
Venkatrao Hanumanthrao Kulkarni

2021 ◽  
Vol 11 (4) ◽  
pp. 7336-7342
Author(s):  
K. Zaher ◽  
N. E. Masango ◽  
W. Sobhi ◽  
K. E. Kanouni ◽  
A. Semmeq ◽  
...  

In the present study, we will verify the action of hydroxychloroquine-based derivatives on ACE2 which is considered to be the main portal of entry of the SARS-CoV-2 virus and constitutes an exciting target given its relative genetic stability compared to viral proteins. Thus, 81 molecules derived from hydroxychloroquine by substitutions at 4 different positions were generated in-silico and then studied for their affinity for ACE2 by molecular docking. Only 4 molecules were retained because of their affinity and bioavailability demonstrated by molecular dynamics and molecular docking calculations using COSMOtherm and Materials Studio software.


Author(s):  
Jeremiah I. Ogah ◽  
Olatunji M. Kolawole ◽  
Steven O. Oguntoye ◽  
Muhammed Mustapha Suleiman

The rise in the incidence of cervical cancer globally has accentuate attention to the potential role of polyphenols as anticancer agents. Different studies have demonstrated the role of some polyphenols in altering Human Papillomavirus (HPV) carcinogenesis. Thus, this study was aimed at establishing the potentials of Schiff-based polyphenols from imesatin and satin as anticancer agents through in silico analysis. The polyphenols were synthesized and characterized using elemental analyses, spectroscopic analyses, UV-visible, Infrared, and Nuclear Magnetic Resonance (1H NMR and 13C, NMR). Molecular docking study of the polyphenols was carried out using Auto Dock Vina. The oncogenic E6 protein structure of HPV 16 was obtained from the protein bank (ID: 4XR8). The E6 proteins were prepared using AutoDock tools. Water molecules were removed from the protein molecules while hydrogen atoms were added. Also, the structures of Curcumin and Isomericitrin were obtained from PubChem. Results showed that three different Schiff based polyphenols were obtained from the synthesis; 3-(2’,4’-dimethoxy benzylidene hydrazono) indoline-2-one (DMBH), 3-(2’-hydroxy-4’-methoxy benzylidene hydrazono) indoline-2-one (HMBD), and 3-((4-4’-((2’’, 4’’-dimethoxy benzylidene amino) benzyl)phenyl)imino) indoline-2-one (DMBP). Higher ability of the docked polyphenols to bind to the E6/E6AP/p53 complex when compared to Curcumin was revealed. Also, results showed that the binding energy of Curcumin and Isomericitrin were -7.1kcal/mol and -8.4kcal/mol respectively while that of the polyphenols ranged from -7.4kcal/mol to -7.9kcal/mol. The molecular docking results of the polyphenols used in this study further confirm their potentials as strong anti-cancer agents.


2019 ◽  
Vol 9 (4) ◽  
pp. 640-648
Author(s):  
Sayed Sharif Balkhi ◽  
Zohreh Hojati

Purpose: Interferon beta (IFN-β) is used to combat multiple sclerosis (MS) disease. CreatingR27T and V101F mutations (mHuIFN-β-27 and mHuIFN-β-101) is one of the tasks performedto improve human interferon beta (HuIFN-β) half-life, function and expression. In this work,the impact of R27T and V101F mutations in recombinant IFN-β on its binding to interferonreceptors were studied by molecular docking.Methods: This work was performed through in silico study. The simulation of mutation wasperformed using the online Rosetta Backrub software and checked using server verify3D.Comparison of access to the solvent of the amino acids in the structures created was performedusing the asaview online server. Also, the effect of mutations on the fold of the protein wasreviewed by the online HOPE server. The molecular docking was performed between HuIFN-βand the external region of IFNAR receptor using the online ClusPro2 protein-protein dockingserver.Results: The comparison of the values of the negative binding energy (ΔGbind) obtained fromprotein-protein molecular docking between IFNAR receptor and HuIFN-β, mHuIFN-β-27,mHuIFN-β-101 and mHuIFN-β-27-101 ligands did not show a significant difference, and thesedifferences do not see any meaningful relationship between them (P > 0.9999).Conclusion: Regarding these results, it can be concluded that these mutations do not have anegative effect on the composition of the complex rHuIFN-β/IFNAR. So, they do not interferewith the binding of the IFN-β to the receptor. It is concluded that the quality of the rHuIFN-β isimproved by introducing these two mutations.<br />


2020 ◽  
Author(s):  
Romulo O. Barros ◽  
Fabio L. C. C. Junior ◽  
Wildrimak S. Pereira ◽  
Neiva M. N. Oliveira ◽  
Ricardo Ramos

The world is currently facing the COVID-19 pandemic caused by the SARS-CoV-2 virus. The pandemic is causing the death of people around the world and public and social health measures to slow or prevent the spread of COVID-19 are being implemented with the involvement of all members of society. Research institutions are accelerating the discovery of vaccines and therapies for the COVID-19. In this work, molecular docking was used to study (in silico) the interaction of twenty-four ligands, divided into four groups, with four important SARS-CoV-2 receptors. The results showed that Metaquine (group 01), antimalarial substance and the anti-HIV antiretroviral Saquinavir (group 03), presented interaction with all the studied receptors, indicating that they are potentials candidates for muti-target drugs for COVID-19.


Sign in / Sign up

Export Citation Format

Share Document