scholarly journals “FORMULATION DEVELOPMENT AND SOLUBILITY ENHANCEMENT OF ROSUVASTATIN CALCIUM BY USING HYDROPHILIC POLYMERS AND SOLID DISPERSION METHOD”

Author(s):  
LOVEPREET KAUR ◽  
TARANJIT KAUR ◽  
AMAR PAL SINGH ◽  
AJEET PAL SINGH

Objective: Preparation of Rosuvastatin Calcium by Using Hydrophilic Polymers and Solid Dispersion Method, Rosuvastatin calcium is a Dyslipidaemic agent, which act as a selective competitive inhibitor of HMG CoA educates enzyme and is used in the treatment of hyperlipidemia. Methods: In the present work, Solid Dispersion was prepared by kneading method to increase the solubility of Rosuvastatin Calcium. Results: Solid dispersions were evaluated by determining percentage yield, drug content, solubility, Scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), DSC and in vitro dissolution profile. The prepared solid dispersion are formulated into capsule dosage form and characterized by various parameters i.e. weight variation, content uniformity, disintegration and dissolution. The evaluated parameters of capsule dosage form increase in solubility and dissolution rate of the pure drug. Conclusion: These are various techniques to enhance the solubility of the drug, such as particle size reduction, use of surfactants, solid dispersion etc. Carriers are the major players in these formulations, e. g. Hydroxypropylmethylcellulose, ethylcellulose, Carbopol, Acacia Gum etc. Carbopol and Acacia Gum is one of the most efficient polymers work as a carrier for these drugs to enhance solubility.

Author(s):  
Hemant Kumar Jain ◽  
Madhuri Taware

Objective: To improve dissolution properties of atazanavir sulphate by preparing gastro-retentive granules by solid dispersion method and development of RP-HPLC method for estimation of this drug.Methods: Estimation of atazanavir sulphate was done using high performance liquid chromatography (HPLC) on inertsil column (5 µm, 250x4, 6 mm) with a mobile phase consists of methanol: water (91:9 v/v), at 0.5 ml/min flow rate and 249 nm UV detection. The method was validated as per ICH guidelines. Selection of the carrier for gastro-retentive formulation was based on phase solubility study of the drug. Solid dispersions of gastro-retentive granules of different composition of drug and carrier, were prepared by the kneading, heating and solvent evaporation. A 32factorial design was applied to optimize the gastro-retentive formulation. The amounts of polyethylene glycol 6000 (PEG 6000) (X1) and hydroxypropyl methyl cellulose (HPMC) (X2) were selected as independent variables and in vitro-release at 5, 9 h and total floating time was selected as dependent variables. Results: HPLC method was found to be linear in a concentration range of 10-60 μg/ml of the drug (r2= 0.999). The low value of % RSD in precision study indicates reproducibility of the method. The low value of LOD and LOQ suggests the sensitivity of the method. The solubility enhancement study of drug with various carriers followed descending order of solubility [Gelucire 44/14>PEG 6000>polyvinyl pyrrilidone (PVP)]. Highest % cumulative release was observed for the heating method at drug polymer (PEG 6000) ratio 1:5. Hence, this ratio has been selected for preparation of solid dispersion. From comparison of dissolution profile of formulated batches, formulation F4 [containing PEG6000 (1.6 g) and HPMC (200 mg)] showed promising dissolution parameters with desired floating properties.Conclusion: Results obtained by validation studies suggested that the developed HPLC method is simple, accurate, precise and can be used for routine analysis of atazanavir sulphate formulation. Results of evaluation of prepared batches indicate that batch F4 is a promising formulation for gastro-retentive dosage form of drug. 


Author(s):  
Suchitra Kaushik ◽  
Kamla Pathak

The aim of the present work was to develop immediate release dosage form of the solid dispersion of glimperide (GLIM) for potential enhancement in the bioavailability. The solid dispersions of GLIM were prepared with PEG6000, PVP K30 and Poloxamer 188, in 1:1, 1:3 and 1:5 %w/w ratio by using solvent wetting and solvent melt method. The in vitro dissolution parameters (%DE10min, %DE30min, %DE60min, T50% and DP30) were used to select the optimized solid dispersion that was characterized by IR, PXRD, DSC and SEM. The optimized solid dispersion of GLIM (GSDSM3) was used as drug component for immediate release (IR) tablets that were evaluated for physical and pharmacopoeial parameters. The in vitro drug release studies identified G4 as the optimized tablet with a cumulative drug release (CDR) of 99.34% in 30 min in phosphate buffer, pH 7.4. The CDR was higher than the marketed tablet (91.15%, Amaryl®, Sanofiaventis), However, the f1 and f2 were 10.6 and 52 respectively, which confirmed similarity of the dissolution profile(s). Accelerated stability studies confirmed stability up to 6 months at 40°C/75% condition in the HDPE bottle pack.


2019 ◽  
Vol 9 (3) ◽  
pp. 240-247
Author(s):  
Prabhakar Panzade ◽  
Priyanka Somani ◽  
Pavan Rathi

Background and Objective: The top approach to deliver poorly soluble drugs is the use of a highly soluble form. The present study was conducted to enhance the solubility and dissolution of a poorly aqueous soluble drug nevirapine via a pharmaceutical cocrystal. Another objective of the study was to check the potential of the nevirapine cocrystal in the dosage form. Methods: A neat and liquid assisted grinding method was employed to prepare nevirapine cocrystals in a 1:1 and 1:2 stoichiometric ratio of drug:coformer by screening various coformers. The prepared cocrystals were preliminary investigated for melting point and saturation solubility. The selected cocrystal was further confirmed by Infrared Spectroscopy (IR), Differential Scanning Calorimetry (DSC), and Xray Powder Diffraction (XRPD). Further, the cocrystal was subjected to in vitro dissolution study and formulation development. Results: The cocrystal of Nevirapine (NVP) with Para-Amino Benzoic Acid (PABA) coformer prepared by neat grinding in 1:2 ratio exhibited greater solubility. The shifts in IR absorption bands, alterations in DSC thermogram, and distinct XRPD pattern showed the formation of the NVP-PABA cocrystal. Dissolution of NVP-PABA cocrystal enhanced by 38% in 0.1N HCl. Immediate release tablets of NVP-PABA cocrystal exhibited better drug release and less disintegration time. Conclusion: A remarkable increase in the solubility and dissolution of NVP was obtained through the cocrystal with PABA. The cocrystal also showed great potential in the dosage form which may provide future direction for other drugs.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 1772-1778
Author(s):  
Jyoti Maithani ◽  
Ranjit Singh ◽  
Sanjay Singh ◽  
Kapil Kalra

Improvement in the solubility of a hydrophobic drug has a significant role in formulation development. The target of this study was the use of solid dispersion and inclusion complex method to enhance and to compare the watery solubility and dissolution qualities of Rifabutin. Various strategies in various proportions have been used in the preparation of the consideration complex with ß-cyclodextrin (ß-CD) and Hydroxypropyl-ß-cyclodextrin (HPß-CD) and found that the better-improved solubility has been seen in kneading technique (AK1) in comparison to the physical mixture method and solvent evaporation method. Various techniques were applied in the preparation of the solid dispersion of Mannitol and polyethene glycol (PEG) 4000. They observed that solvent evaporation (CS4) had shown the better improvement of solubility when compared with the physical mixture method and kneading method. As the two methodologies were analysed, it was observed that the inclusion complex technique was far better as it caused a noteworthy enhancement in dissolution profile (99.23±0.25). The drug content was calculated (99.15±0.14) and % inclusion yield was calculated (99.5 %), which was found to be maximum with the kneading technique (AK1). The characterization FTIR and SEM of the complexes shows that the drug had an amorphous structure. The amorphous structure of a drug has higher dissolution potential than the crystalline structure of the drug. The IR Spectroscopy and Scanning electron microscopy (SEM) were done to check their impact on dissolution behaviour and any if there was any physicochemical interaction between the carrier and the drug.


2021 ◽  
Vol 9 (2) ◽  
pp. 127-135
Author(s):  
Anil Raosaheb Pawar ◽  
Pralhad Vitthalrao Mundhe ◽  
Vinayak Kashinath Deshmukh ◽  
Ramdas Bhanudas Pandhare ◽  
Tanaji Dilip Nandgude

The aim of the present study was to formulate solid dispersion (SD) of Mesalamine to enrich the aqueous solubility and dissolution rate. Mesalamine is used in the management of acute ulcerative colitis and for the prevention of relapse of active ulcerative colitis. In the present study, Solid dispersion of Mesalamine was prepared by Fusion and Solvent evaporation method with different polymers. SD’s were characterized by % practical yield, drug content, Solubility, FT-IR, PXRD (Powder X- ray diffractometry), SEM (Scanning electron microscopy), in vitro dissolution studies and Stability studies. The percent drug release of prepared solid dispersion of Mesalamine by fusion and solid dispersion method (FM47, FM67, SE47 and SE67) in 1:7 ratio was found 81.36±0.41, 86.29±0.64, 82.45±0.57and 87.25±1.14 respectively. The aqueous solubility and percent drug release of solid dispersion of Mesalamine by both methods was significantly increased. The PXRD demonstrated that there was a significant decrease in crystallinity of pure drug present in the solid dispersions, which resulted in an increased aqueous solubility and dissolution rate of Mesalamine.The significant increase in aqueous solubility and dissolution rate of Mesalamine was observed in solid dispersion as the crystallinity of the drug decreased, absence of aggregation and agglomeration, increased wetability and good dispersibility after addition of PEG 4000 and PEG 6000.


Author(s):  
UDAYKUMAR B. BOLMAL ◽  
PRAMOD H. J.

Objective: The goal of the present investigation was to improve the solubility and bioavailability of atovaquone tablet, using in-house biosynthesized biosurfactant in the ternary system of solid dispersion containing hydrophilic polymers with varying concentrations of biosurfactant. Atovaquone is an anti-malarial agent and belongs to biopharmaceutical classification system class IV. Methods: The solid dispersion of binary and ternary mixture was prepared using hydroxyl propyl methyl cellulose (HPMC) and biosurfactant respectively by a solvent evaporation method. All the atovaquone tablet formulations were prepared by incorporation of physical mixture, binary and ternary solid dispersed products with excipients by direct compression method. Pre-compression and post-compression parameters of atovaquone tablets were evaluated. In vivo bioavailability study was performed using female albino rabbits. Results: In vitro dissolution profile of binary and ternary system of solid dispersion products showed 8.65% and 34.64% respectively. Precompression and post-compression values of all atovaquone tablets formulations were within the specified limits. In vitro dissolution efficiency of F2 and F5 were 1.44 fold and 6.62 fold respectively, in accordance to the F1. In vivo study revealed that bioavailability of optimized formulation F5 was increased by 2.5 times and time to reach peak concentration was reduced to 1.4 h, in accordance to pure atovaquone suspension. Conclusion: Potential application of biosurfactant in the solid dosage form of atovaquone tablet was proved for enhanced dissolution rate and bioavailability of atovaquone for malaria treatment.


2019 ◽  
Vol 9 (2) ◽  
pp. 583-590 ◽  
Author(s):  
Sandip R. Pawar ◽  
Shashikant D. Barhate

The solubility of a solute is the maximum quantity of solute that can dissolve in a certain quantity of solvent or quantity of solution at a specified temperature. Solubility is one of the important parameter to achieve desired concentration of drug in systemic circulation for pharmacological response to be shown. Solubility is essential for the therapeutic effectiveness of the drug, independent of the route of administration. Low aqueous solubility is the major problem encountered with formulation development of new chemical entities as well as for the generic development. Poorly soluble drugs are often a challenging task for formulators in the industry Conventional  approaches  for  enhancement  of  solubility  have  limited  applicability,  especially when  the  drugs  are  poorly  soluble  simultaneously  in  aqueous  and  in  non-aqueous  media. Drug with poor water solubility cause slow dissolution rates, generally show erratic and incomplete absorption leading to low bioavailability when administered orally. Solubilization may be affected by cosolvent water  interaction, micellar solubilization, reduction in  particle  size,  inclusion  complexes,  solid  dispersion,  and  change  in  polymorph.  Some  new technologies  are  also  available  to  increase  the  solubility  like  micro emulsion,  self-emulsifying drug  delivery  system  and  supercritical  fluid  technology. This present review details about the different approaches used for the enhancement of the solubility of poorly water-soluble drugs include particle size reduction, nanonization, pH adjustment, solid dispersion, complexation, co‐solvency, hydrotropy etc. The purpose of this article is to describe the techniques of solubilization for the attainment of effective absorption and improved bioavailability. Keywords: Solubility, Solubility Enhancement, bioavailability, solid dispersion, Solid Dispersion, Solubilization.


Author(s):  
B Sangameswaran ◽  
M Gomathi

The poor solubility of drug substances in water and their low dissolution rate in aqueous G.I.T fluid often leads to insufficient bioavailability. As per Biopharmaceutical Classification System (BCS), Olmesartan belongs to the class-II category having poor solubility and high permeability. Since only dissolved drug can pass the gastrointestinal membrane, the proper solubility of the drug is ultimately desired. Its oral bioavailability is 26%. Hence, an attempt was made to enhance its solubility by formulating solid dispersions using different techniques viz., Melting, Kneading, Co-precipitation, Solvent evaporation and Physical mixing etc., Drug and carrier (Urea) in different ratios like 1: 1, 1: 2, 1: 3 and 1:4 were used for formulating solid dispersions. The compatibility of the drug with the carrier was checked by FTIR studies, these results revealed that there was no interaction between them. The angle of repose, bulk density, tapped density; Carr’s index and Hausner ratio were calculated for the micrometric characterization of all the solid dispersions. The drug content was found to be high and uniform in all formulations. The prepared Solid dispersion SEM4 (1:4) showed minimal wetting time of 13 seconds compared with the other formulations. In vitro dissolution, release studies in Phosphate buffer pH of 6.8 revealed that the prepared solid dispersions showed faster drug release compared with the pure drug.  The in vitro dissolution profile showed ascendency on increasing the carrier concentration


2021 ◽  
Vol 14 (1) ◽  
pp. 73
Author(s):  
Bhupendra Raj Giri ◽  
Jaewook Kwon ◽  
Anh Q. Vo ◽  
Ajinkya M. Bhagurkar ◽  
Suresh Bandari ◽  
...  

Telmisartan (TEL, an antihypertensive drug) belongs to Class II of the Biopharmaceutical Classification System (BCS) because of its poor aqueous solubility. In this study, we enhanced the solubility, bioavailability, and stability of TEL through the fabrication of TEL-loaded pH-modulated solid dispersion (TEL pHM-SD) using hot-melt extrusion (HME) technology. We prepared different TEL pHM-SD formulations by varying the ratio of the drug (TEL, 10–60% w/w), the hydrophilic polymer (Soluplus®, 30–90% w/w), and pH-modifier (sodium carbonate, 0–10% w/w). More so, the tablets prepared from an optimized formulation (F8) showed a strikingly improved in vitro dissolution profile (~30-fold) compared to the free drug tablets. The conversion of crystalline TEL to its amorphous state is observed through solid-state characterizations. During the stability study, F8 tablets had a better stability profile compared to the commercial product with F8, showing higher drug content, low moisture content, and negligible physical changes. Moreover, compared to the TEL powder, in vivo pharmacokinetic studies in rats showed superior pharmacokinetic parameters, with maximum serum concentration (Cmax) and area under the drug concentration–time curve (AUC0–∞) of the TEL pHM-SD formulation increasing by 6.61- and 5.37-fold, respectively. Collectively, the results from the current study showed that the inclusion of a hydrophilic polymer, pH modulator, and the amorphization of crystalline drugs in solid dispersion prepared by HME can be an effective strategy to improve the solubility and bioavailability of hydrophobic drugs without compromising the drug’s physical stability.


2021 ◽  
Vol 56 (3) ◽  
pp. 165-176
Author(s):  
MR Sarkar ◽  
A Hossin ◽  
ASMM Al Hossain ◽  
KMYK Sikdar ◽  
SZ Raihan ◽  
...  

Atorvastatin calcium (ATV) is an HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase inhibitor commonly known as a cholesterol-lowering agent. As a poorly water-soluble drug its absolute bioavailability is very low. To increase the water solubility as well as oral bioavailability, different hydrophilic carriers were used in different ratios (1:0.5, 1:1 and 1:2) to prepare reproducible binary and ternary solid dispersion formulations of ATV by simple physical mixing (PM) and fusion or melting technique. In vitro dissolution studies results revealed that in all cases, the cumulative percent drug release from ATV ternary SD formulations were greater than binary formulations, some marketed products and pure ATV powder. The order of the carriers in enhancing the drug release was found as kollidon 90F > pregelatinized starch > lutrol> kollidon 12F (99.1%, 98.8%, 96% and 95% respectively) for ternary SD formulations whereas pure ATV powder and marketed products showed cumulative percentage release 70.8%, 68.9% (B1) and 73.1% (B2), respectively. The best-out performed ternary SD formulation ATV:Kollidon 90 F (1:2) were further characterized using FT-IR and SEM. SEM analyses indicated conversion of crystal drug to amorphous form and FT-IR data suggested that little or no interaction between the drug and polymer. Bangladesh J. Sci. Ind. Res.56(3), 165-176, 2021


Sign in / Sign up

Export Citation Format

Share Document