scholarly journals FORMULATION AND IN-VITRO EVALUATION OF THEOPHYLLINE HYDROCHLORIDE EFFERVESCENT FLOATING TABLETS: EFFECT OF POLYMER CONCENTRATION ON TABLET BUOYANCY

Author(s):  
AKPABIO E. I. ◽  
EFFIONG D. E. ◽  
UWAH T. O. ◽  
SUNDAY N. I.

Objective: This study was undertaken to formulate a floating drug delivery system of theophylline hydrochloride using different concentrations of a chosen polymer and then investigate how polymer concentration affects buoyancy and drug release properties of the tablets. Methods: Hydroxypropyl methylcellulose (HPMC) at different concentration levels of 15% (F1), 20% (F2) and 30% (F3) was used to form the three formulation batches of floating tablets. Wet granulation method was used for the granule preparation while Sodium bicarbonate and citric acid were used as the gas generating agent. The physical properties of the granules and the floating tablets were evaluated. Also determined were the physicomechanical properties, buoyancy and swelling characteristics of the tablets. The in vitro drug release study was carried out according to the USP I (basket method) for 8h in 900 ml 0.1N HCl at 50 rpm. Samples withdrawn at the regular predetermined time were analyzed spectrophotometrically at a wavelength of 271 nm and data obtained statistically analyzed by one-way analysis of variance (ANOVA). The differences between means were considered significant at P<0.05. Results: The result showed that polymer (HPMC) concentration significantly (p>0.05) increased swelling index and improved floating lag time, it had no significant effect on the total floating time. Percentage drug release at the end of 8 h was 100%, 98.2% and 96.13% for formulation F1, F2 and F3, respectively. All three formulations followed the Higuchi drug release kinetics model and the mechanism of drug release was the non Fickian diffusion with exponents of 0.46, 0.51 and 0.56 for the respective batch. Conclusion: Batch F3 gave a better-controlled drug release and floating properties in comparison to batch F1 and F2 thus Polymer concentration influenced the onset of floating and controlled the release of Theophylline.

2009 ◽  
Vol 59 (2) ◽  
pp. 211-221 ◽  
Author(s):  
Ramesh Bomma ◽  
Rongala Swamy Naidu ◽  
Madhusudan Yamsani ◽  
Kishan Veerabrahma

Development and evaluation of gastroretentive norfloxacin floating tabletsFloating matrix tablets of norfloxacin were developed to prolong gastric residence time, leading to an increase in drug bioavailability. Tablets were prepared by the wet granulation technique, using polymers such as hydroxypropyl methylcellulose (HPMC K4M, HPMC K100M) and xanthan gum. Tablets were evaluated for their physical characteristics,viz., hardness, thickness, friability, and mass variation, drug content and floating properties. Further, tablets were studied forin vitrodrug release characteristics for 9 hours. The tablets exhibited controlled and prolonged drug release profiles while floating over the dissolution medium. Non-Fickian diffusion was confirmed as the drug release mechanism from these tablets, indicating that water diffusion and polymer rearrangement played an essential role in drug release. The best formulation (F4) was selected based onin vitrocharacteristics and was usedin vivoradiographic studies by incorporating BaSO4. These studies revealed that the tablets remained in the stomach for 180 ± 30 min in fasting human volunteers and indicated that gastric retention time was increased by the floating principle, which was considered desirable for the absorption window drugs.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Haarika B ◽  
Jyothi Sri S ◽  
K Abbulu

The purpose of present investigation was to develop floating matrix tablets of gemifloxacin mesylate, which after oral administration could prolong the gastric residence time, increase the drug bioavailability and diminish the side effects of irritating drugs. Tablets containing drug, various viscosity grades of hydroxypropyl methylcellulose such as HPMC K4M and HPMC K15M as matrix forming agent, Sodium bicarbonate as gas-forming agent and different additives were tested for their usefulness in formulating gastric floating tablets by direct compression method. The physical parameters, in vitro buoyancy, release characteristics and in vivo radiographic study were investigated in this study. The gemifloxacin mesylate floating tablets were prepared using HPMC K4M polymer giving more sustained drug release than the tablet containing HPMC K15M. All these formulations showed floating lag time of 30 to 47 sec and total floating time more than 12 h. The drug release was decreased when polymer concentration increases and gas generating agent decreases. Formulation that contains maximum concen-tration of both HPMC K15M and sodium bicarbonate (F9) showing sufficiently sustained with 99.2% of drug release at 12 h. The drug release from optimized formulation follows Higuchi model that indicates the diffusion controlled release. The best formulation (F9) was selected based on in vitro characteristics and used in vivo radiographic studies by incorporating barium sulphate as a radio-opaque agent and the tablet remained in the stomach for about 6 h.   


2011 ◽  
Vol 61 (2) ◽  
pp. 217-226 ◽  
Author(s):  
Komuravelly Someshwar ◽  
Kalyani Chithaluru ◽  
Tadikonda Ramarao ◽  
K. Kumar

Formulation and evaluation of effervescent floating tablets of tizanidine hydrochloride Tizanidine hydrochloride is an orally administered prokinetic agent that facilitates or restores motility through-out the length of the gastrointestinal tract. The objective of the present investigation was to develop effervescent floating matrix tablets of tizanidine hydrochloride for prolongation of gastric residence time in order to overcome its low bioavailability (34-40 %) and short biological half life (4.2 h). Tablets were prepared by the direct compression method, using different viscosity grades of hydroxypropyl methylcellulose (HPMC K4M, K15M and K100M). Tablets were evaluated for various physical parameters and floating properties. Further, tablets were studied for in vitro drug release characteristics in 12 hours. Drug release from effervescent floating matrix tablets was sustained over 12 h with buoyant properties. DSC study revealed that there is no drug excipient interaction. Based on the release kinetics, all formulations best fitted the Higuchi, first-order model and non-Fickian as the mechanism of drug release. Optimized formulation (F9) was selected based on the similarity factor (f2) (74.2), dissolution efficiency at 2, 6 and 8 h, and t50 (5.4 h) and was used in radiographic studies by incorporating BaSO4. In vivo X-ray studies in human volunteers showed that the mean gastric residence time was 6.2 ± 0.2 h.


Author(s):  
Ashok Thulluru ◽  
M. Mohan Varma ◽  
C M Setty ◽  
Pavan Kumar Chintamaneni ◽  
S. Sriharsha Vardhan

The present study was aimed to convert Metoprolol Succinate convert into Gastro Retentive Floating Tablet (GRFT). The gas generating floating tablets of Metoprolol Succinate were prepared to increase the gastric retention and to extend the drug release up to 12 hr. and thereby enhancing its bioavailability. The floating tablets were formulated using HPMCK 100M alone and with the combination of sodium alginate to the polymer of varying concentrations. The tablets were prepared by non-aqueous wet granulation method. The formulated granules were evaluated for pre-compression studies, after the compression of tablets they were subjected to various post-compression studies: Average weight, thickness, density, hardness, % friability, % drug content, (In vitro buoyancy studies: floating time, total floating time and matrix integrity up to 12 hr) and the In vitro drug release studies. The optimized formulation (F4) was found to follow a near perfect zero order kinetics (regression coefficient,      r2 = 0.978). Higuchi plot for formulation, F4, showed r2 value of 0.978, suggesting that the diffusion and erosion plays an important role in the controlled release of the drug. The data was fitted to the Korsemeyer-Peppa’s equation; and the value of the diffusion component (n=0.654), for the formulation F4, indicated that the drug release follows non-Fickian diffusion.  


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (08) ◽  
pp. 67-70
Author(s):  
S. R. Baratam ◽  
◽  
V. R. Jayanthi

Gastro floating drug delivery system (GFDDS) of Levofloxacin hemihydrate (LVF), category of Quinoline antibiotic used to treat Helicobacter pylori infection. The aim of the study was to develop a Floating matrix system (FDDS) of LVF for sustained release to improve the extended retention in stomach and local site specific action in the stomach. Preparation of LVF tablets using wet granulation method using HPMC K4M with Sodium bicarbonate as effervescent agent. All formulations were developed and evaluated for Floating properties for swelling characteristics and in vitro drug release studies. In vitro drug release were performed and drug release kinetics were evaluated by using linear regression method and was found to be follow zero order release with diffusion controlled release. Optimized formula was found to be LFTA4 with 20% of polymer with 99.03% of drug release with 12 hours of Floating time and 32 seconds floating lag time. The obtained FT-IR charts indicated that there is no positive evidence for the interaction between LVF and ingredients of the optimized formula.


Author(s):  
YOGITA TYAGI ◽  
N. V. SATHEESH MADHAV

Objective: Development and evaluation of selegiline-loaded bio-nanosuspensions using biopolymer which was isolated from seeds of Buchanania lanzan (Chironji), used as biostabilizer and compared with standard polymer. Methods: The selegiline-loaded bio-nanosuspensions were prepared using novel biopolymer and standard stabilizer (hydroxypropyl methylcellulose) by sonication solvent evaporation method with different ratios (1%, 2%, 3%, 4%, and 5%) and evaluated for particle size, polydispersity index, zeta potential, pH stability studies, percentage entrapment efficacy, in vitro drug release, and stability studies. Results: The prepared selegiline bio-nanosuspensions were subjected to the best formulation based on comparison of above-mentioned evaluation parameters, so Fb2 (2%) formulation was found to be the best formulation showing an R2=0.9842, T50% of 32 h and T80% of 70 h, respectively. According to the release kinetics, the best fit model was found to be Peppas-Korsmeyer with Fickian diffusion (Higuchi matrix) as the mechanism of drug release, and Fs5 (5%) formulation was found to be the best formulation showing an R2=0.9564, T50% of 25 h and T80% of 60 h, respectively. According to the release kinetics, the best fit model was found to be Peppas-Korsmeyer with Fickian diffusion (Higuchi matrix) as the mechanism of drug release. The biopolymer provided excellent stability for the formulation and resulting particle size for the best formulation was found to be 360 nm. The best formulation was found to be polydispersity index of 0.43 with zeta potential of −5.12 mV. Conclusion: The prepared bio-nanosuspensions using biopolymer were found to be safe and compatible with the novel drug delivery for the treatment of depression in comparison of standard polymer.


2019 ◽  
Vol 9 (4) ◽  
pp. 299-307
Author(s):  
Kuldeep Singh ◽  
Subheet K. Jain ◽  
Karan Razdan ◽  
Harmanpreet Singh ◽  
Nikhil S. Sahajpal ◽  
...  

Background and Objective: Ferrous ascorbate (FA) is preferentially absorbed from the upper gastrointestinal (GI) track, and has low bioavailability due to less residence time of FA in upper GI track. In addition, FA has low solubility and stability at higher pH. The aim of this study was to prepare gastro-retentive tablets of FA in order to increase its gastric residence time and hence, bioavailability. Methods: Floating tablets of FA were prepared by wet granulation method using different retarding polymers, Povidone K30 as binder and sodium bicarbonate as effervescent agent. The prepared floating tablets were compared with immediate release (IR) tablets and characterized in detail for in vitro and in vivo studies. Results: In-vitro drug release study of the optimized batch showed 96% drug release in 12 h in 0.1 N HCl. The mechanism of drug release from the floating tablets was non-fickian and release kinetics was best fit in peppas model. The gastric retention time of optimized was found to be significantly increased (6 h) in comparison with IR tablet (<1h). Further, bioavailability was also found significantly increased (>70%) in comparison with IR tablet (15-30%). X-ray studies carried on healthy rabbits suggested that the optimized batch remained buoyant in gastric contents up to 6 h and pharmacokinetic study showed sustained released behaviour of optimized batch in comparison to conventional IR tablet. Conclusion: Floating tablet of FA improved the bioavailability of iron by increasing its gastric residence time, hence it could be a better approach for treating iron deficiency and help in improving the patient compliance than IR tablets.


Author(s):  
Anjali P.B ◽  
Jawahar N. ◽  
Jubie S. ◽  
Neetu Yadav ◽  
Selvaraj A. ◽  
...  

Background: : Epilepsy is a genuine neurological turmoil that effects around 50 million individuals around the world. Practically 30% of epileptic patients experience the ill effects of pharmaco-obstruction, which is related with social seclusion, subordinate conduct, low marriage rates, joblessness, mental issues and diminished personal satisfaction. At present accessible antiepileptic drugs have a restricted viability, and their negative properties limit their utilization and cause challenges in patient administration. Gabapentin 1-(aminomethyl)cyclohexane acetic acid, Gbp , (trade name Neurontin), a structural analog of γ-aminobutyric acid (GABA), BCS class 3 drug with having permeability issues. Objective: This work was an attempt to formulate and characterize a new approach to treat epilepsy by targeting to Phospholipase A2 Enzyme through Nanostructured Lipid Carrier. Methods: Docking studied carried out using Accelrys Discovery studio 4.1 Client and gabapentin and phosphotidylcholine were conjugated through chemical conjugation. Nanostructured lipid carrier (NLC) was prepared using hot homogenization technique. Results: The libdock score of Gabapentin- Phosphotidylcholine conjugate (192.535) were found to be more than Gabapentin (77.1084) and Phosphotidylcholine (150.212). For the optimized formulation the particle size (50.08), zeta potential (-1.48), PDI (0.472) and entrapment efficiency (77.8) was observed. The NLC was studies for in-vitro drug release studies and release kinetics. Finally found that the drug release from the NLC followed Higuchi release kinetic and the mode of drug release from the NLC was found to be Non- Fickian diffusion. Conclusion: The formulated Nanostructured lipid carrier of Gabapentin-Phosphotidylcholine conjugate may be able to use to prevent seizure.


2018 ◽  
Vol 6 (11) ◽  
pp. 61-80 ◽  
Author(s):  
Shashank Soni ◽  
Veerma Ram ◽  
Anurag Verma

In the present experimental investigation an attempt has been made to assess the utility of Crushed Puffed Rice (CPR)-High Molecular Weight Chitosan (HMWCH)-Hydroxypropyl Methylcellulose K15M (HPMC K15M) as a polymeric carrier for the sustained stomach delivery of Piroxicam (PRX). A total of nine formulations were prepared by using 3 (2) Taguchi factorial design, physically blending drug and polymer(s) followed by encapsulation into hard gelatin capsules size 1. The prepared capsules were evaluated for various performance such as weight variation, drug contents, in vitro buoyancy and drug release in 0.1 M HCl. The effect of drug loading on in vitro performance of the formulations was also determined. Crushed puffed rice (CPR) remained buoyant for up to average time span of 06 hr as an unwetted irregular mass in 0.1 M HCl. However, when combined with HMWCH or HPMC K15M or HPMC K15M + HMWCH a low -density cylindrical raft type hydrogel was formed which remained buoyant for up to 12 hr and released up to 99% drug in a sustained manner from 8 to 12 hr following zero order release kinetics. It was also observed that drug release from drug + CPR matrices followed Fickian mechanism. Combination of CPR + HMWCH or HMWCH + HPMC K15M also follows Fickian mechanism. Obtained data from the research work suggests that CPR in combination with HMWCH or HPMC K15M or HPMC has sufficient potential to be used as a carrier for stomach specific delivery of gastric irritant drug like PRX.Soni et al., International Current Pharmaceutical Journal, April 2018, 6(11): 61-80http://www.icpjonline.com/documents/Vol6Issue11/01.pdf


2018 ◽  
Vol 10 (5) ◽  
pp. 76
Author(s):  
Methaq Hamad Sabar ◽  
Iman Sabah Jaafar ◽  
Masar Basim Mohsin Mohamed

Objective: The aim of this study was to formulate ketoconazole (keto) as oral floating in situ gel to slow the release of keto in the stomach.Methods: Sodium alginate (Na alginate) was used as a primary polymer in the preparation of the in situ gel and was supported by the following polymers: guar gum (GG), hydroxypropyl methylcellulose (HPMC) K4M, K15M and carbapol 940 as viscosity enhancing agents. As a consequence, and to complete the gelation process of above formulations was by adding the calcium carbonate (CaCO3). The in situ gels were investigated by the following tests: floating lag time, floating duration, viscosity, drug content, in vitro gelling studies and in vitro release study.Results: The study showed that the faster release was obtained with F1 which contained Na alginate alone. Additionally, reduction in Na alginate concentration resulted in significant increase in drug release. It was also noted that the increase in GG (viscosity enhancing polymer) concentration resulted in non-significant decrease in percent drug release and the reduction in CaCO3 concentration led to significant increase in drug release. Moreover, the release of drug was also affected by grade of viscosity enhancing polymer, the faster release was observed with the formula which contained a polymer of low viscosity (HPMC K4M) and an opposite result was with the high viscosity polymer (HPMCK15M).Conclusion: This study showed the formulation of Na alginate with GG and CaCO3, led to gain floating in situ gel and a sustained release of keto. 


Sign in / Sign up

Export Citation Format

Share Document