Cranial reconstruction using a polycaprolactone implant after burr hole trephination

2020 ◽  
Vol 4 (1) ◽  
pp. 9-16
Author(s):  
Ning Chou

Aim: This retrospective study evaluated the safety of using polycaprolactone (PCL) burr hole covers over a 10-year period. Materials & methods: Patients with PCL burr hole cover implants inserted between 1 April 2006 and 31 September 2015 were identified and included in this study. Burr hole covers were used in surgery for chronic subdural hematoma, hydrocephalus and tumor biopsy. Results: 174 patients with a total of 275 implants inserted were included in the study. Overall, the use of PCL implants was safe and did not increase the rate of surgical complications. The radiology study of two cases and histology study of a removed PCL implant demonstrated evidence of soft tissue regeneration. Conclusion: PCL burr hole covers demonstrated safety in use for craniotomy burr hole reconstruction.

2014 ◽  
Vol 16 (3) ◽  
pp. 195-214
Author(s):  
Roshan James ◽  
Matthew D. Harmon ◽  
Sangamesh G. Kumbar ◽  
Cato T. Laurencin

2021 ◽  
Vol 6 (11) ◽  
pp. 4096-4109
Author(s):  
Jinchun Ye ◽  
Chang Xie ◽  
Canlong Wang ◽  
Jiayun Huang ◽  
Zi Yin ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mary Beth Wandel ◽  
Craig A. Bell ◽  
Jiayi Yu ◽  
Maria C. Arno ◽  
Nathan Z. Dreger ◽  
...  

AbstractComplex biological tissues are highly viscoelastic and dynamic. Efforts to repair or replace cartilage, tendon, muscle, and vasculature using materials that facilitate repair and regeneration have been ongoing for decades. However, materials that possess the mechanical, chemical, and resorption characteristics necessary to recapitulate these tissues have been difficult to mimic using synthetic resorbable biomaterials. Herein, we report a series of resorbable elastomer-like materials that are compositionally identical and possess varying ratios of cis:trans double bonds in the backbone. These features afford concomitant control over the mechanical and surface eroding degradation properties of these materials. We show the materials can be functionalized post-polymerization with bioactive species and enhance cell adhesion. Furthermore, an in vivo rat model demonstrates that degradation and resorption are dependent on succinate stoichiometry in the elastomers and the results show limited inflammation highlighting their potential for use in soft tissue regeneration and drug delivery.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 336
Author(s):  
Sven Pantermehl ◽  
Steffen Emmert ◽  
Aenne Foth ◽  
Niels Grabow ◽  
Said Alkildani ◽  
...  

The use of additive manufacturing (AM) technologies is a relatively young research area in modern medicine. This technology offers a fast and effective way of producing implants, tissues, or entire organs individually adapted to the needs of a patient. Today, a large number of different 3D printing technologies with individual application areas are available. This review is intended to provide a general overview of these various printing technologies and their function for medical use. For this purpose, the design and functionality of the different applications are presented and their individual strengths and weaknesses are explained. Where possible, previous studies using the respective technologies in the field of tissue engineering are briefly summarized.


Sign in / Sign up

Export Citation Format

Share Document