3D bioprinting of mesenchymal stem cells and endothelial cells in an alginate-gelatin-based bioink
Aim: Bioink is one of the essential factors in 3D bioprinting that determines the fate of cells, in our case, umbilical cord-derived mesenchymal stem cells (UMSC). The aim was to determine if the presence of the osteoinductive factors in the bioink enhances osteodifferentiation as compared with adding them postprinting and if the UMSC and endothelial cells (EC) coculture result in better osteodifferentiation. Materials & methods: Alginate-gelatin along with UMSC–EC were bioprinted using an extrusion 3D bioprinter. Results & conclusion: The UMSC–EC interaction, as well as intrinsic addition of the differentiation components in the bioink, were observed to play a vital role in increasing the osteogenic differentiation as shown by the histochemical staining, alkaline phosphatase activity and gene expression of osteogenic markers.