CardioMEMS™: a tool for remote hemodynamic monitoring of chronic heart failure patients

2021 ◽  
Author(s):  
Sumant P Radhoe ◽  
Jasper J Brugts

Remote monitoring is becoming increasingly important for management of chronic heart failure patients. Recently, hemodynamic monitoring by measuring intracardiac filling pressures has been gaining attention. It is believed that hemodynamic congestion precedes clinical congestion by several weeks and that remote hemodynamic monitoring therefore enables clinicians to intervene in an early stage and prevent heart failure hospitalizations. The CardioMEMS HF system (Abbott, CA, USA) is a sensor capable of measuring pulmonary artery pressures as a surrogate of left ventricular filling pressures. Clinical evidence for CardioMEMS has been convincing in terms of efficacy and safety. This article provides detailed information on the CardioMEMS HF system and summarizes all available evidence of this promising technique.

Author(s):  
Anne-Sophie Schuurman ◽  
Anirudh Tomer ◽  
K. Martijn Akkerhuis ◽  
Ewout J. Hoorn ◽  
Jasper J. Brugts ◽  
...  

Abstract Background High mortality and rehospitalization rates demonstrate that improving risk assessment in heart failure patients remains challenging. Individual temporal evolution of kidney biomarkers is associated with poor clinical outcome in these patients and hence may carry the potential to move towards a personalized screening approach. Methods In 263 chronic heart failure patients included in the prospective Bio-SHiFT cohort study, glomerular and tubular biomarker measurements were serially obtained according to a pre-scheduled, fixed trimonthly scheme. The primary endpoint (PE) comprised cardiac death, cardiac transplantation, left ventricular assist device implantation or heart failure hospitalization. Personalized scheduling of glomerular and tubular biomarker measurements was compared to fixed scheduling in individual patients by means of a simulation study, based on clinical characteristics of the Bio-SHiFT study. For this purpose, repeated biomarker measurements and the PE were jointly modeled. For personalized scheduling, using this fitted joint model, we determined the optimal time point of the next measurement based on the patient’s individual risk profile as estimated by the joint model and the maximum information gain on the patient’s prognosis. We compared the schedule’s capability of enabling timely intervention before the occurrence of the PE and number of measurements needed. Results As compared to a pre-defined trimonthly scheduling approach, personalized scheduling of glomerular and tubular biomarker measurements showed similar performance with regard to prognostication, but required a median of 0.4–2.7 fewer measurements per year. Conclusion Personalized scheduling is expected to reduce the number of patient visits and healthcare costs. Thus, it may contribute to efficient monitoring of chronic heart failure patients and could provide novel opportunities for timely adaptation of treatment. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document