The estrogen pathway as a modulator of response to immunotherapy

Immunotherapy ◽  
2019 ◽  
Vol 11 (13) ◽  
pp. 1161-1176 ◽  
Author(s):  
Maria A Velez ◽  
Timothy F Burns ◽  
Laura P Stabile

Lung cancer is the leading cause of cancer deaths worldwide, with a 5-year survival rate of about 18%. Thus, there is a great need for novel therapeutic approaches to treat non-small-cell lung cancer (NSCLC). Immune checkpoint inhibitors (ICIs) have improved outcomes for a subset of patients, especially those with high programmed death-ligand 1 expression and/or high tumor mutational burden, but have failed in the majority of patients. Increasing evidence suggests that the estrogen signaling pathway may be a therapeutic target in metastatic NSCLC and that the estrogen pathway may play a role in sex-based responses to ICIs. This report will review the epidemiologic, preclinical and clinical data on the estrogen pathway in NSCLC, its implications in sex-based responses to ICIs and the potential use of antiestrogen therapy in combination with ICIs.

Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3625
Author(s):  
Boris Duchemann ◽  
Jordi Remon ◽  
Marie Naigeon ◽  
Laura Mezquita ◽  
Roberto Ferrara ◽  
...  

Immune checkpoint inhibitors are now a cornerstone of treatment for non-small cell lung cancer (NSCLC). Tissue-based assays, such as Programmed cell death protein 1 (PD-L1) expression or mismatch repair deficiency/microsatellite instability (MMRD/MSI) status, are approved as treatment drivers in various settings, and represent the main field of research in biomarkers for immunotherapy. Nonetheless, responses have been observed in patients with negative PD-L1 or low tumor mutational burden. Some aspects of biomarker use remain poorly understood and sub-optimal, in particular tumoral heterogeneity, time-evolving sampling, and the ability to detect patients who are unlikely to respond. Moreover, tumor biopsies offer little insight into the host’s immune status. Circulating biomarkers offer an alternative non-invasive solution to address these pitfalls. Here, we summarize current knowledge on circulating biomarkers while using liquid biopsies in patients with lung cancer who receive treatment with immune checkpoint inhibitors, in terms of their potential as being predictive of outcome as well as their role in monitoring ongoing treatment. We address host biomarkers, notably circulating immune cells and soluble systemic immune and inflammatory markers, and also review tumor markers, including blood-based tumor mutational burden, circulating tumor cells, and circulating tumor DNA. Technical requirements are discussed along with the current limitations that are associated with these promising biomarkers.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2974
Author(s):  
Andrea Sesma ◽  
Julián Pardo ◽  
Mara Cruellas ◽  
Eva M. Gálvez ◽  
Marta Gascón ◽  
...  

Despite therapeutic advances, lung cancer (LC) is one of the leading causes of cancer morbidity and mortality worldwide. Recently, the treatment of advanced LC has experienced important changes in survival benefit due to immune checkpoint inhibitors (ICIs). However, overall response rates (ORR) remain low in unselected patients and a large proportion of patients undergo disease progression in the first weeks of treatment. Therefore, there is a need of biomarkers to identify patients who will benefit from ICIs. The programmed cell death ligand 1 (PD-L1) expression has been the first biomarker developed. However, its use as a robust predictive biomarker has been limited due to the variability of techniques used, with different antibodies and thresholds. In this context, tumor mutational burden (TMB) has emerged as an additional powerful biomarker based on the observation of successful response to ICIs in solid tumors with high TMB. TMB can be defined as the total number of nonsynonymous mutations per DNA megabases being a mechanism generating neoantigens conditioning the tumor immunogenicity and response to ICIs. However, the latest data provide conflicting results regarding its role as a biomarker. Moreover, considering the results of the recent data, the use of peripheral blood T cell receptor (TCR) repertoire could be a new predictive biomarker. This review summarises recent findings describing the clinical utility of TMB and TCRβ (TCRB) and concludes that immune, neontigen, and checkpoint targeted variables are required in combination for accurately identifying patients who most likely will benefit of ICIs.


2020 ◽  
Vol 16 (2_suppl) ◽  
pp. 4s-9s ◽  
Author(s):  
Marianne J. Davies ◽  
Anne C. Chiang

Immunotherapy with programmed cell death-1 (PD-1) receptor and programmed death ligand 1 (PD-L1) inhibitors has improved outcomes for certain patients with advanced lung cancer. As use of these therapies has expanded in first-line settings, in patients with different histologies, and in combinations with chemotherapeutic and targeted agents, more patients with lung cancer may benefit from these therapies. However, with expanded use comes greater potential exposure to the immune-related adverse events (irAEs) associated with these immune checkpoint inhibitors (ICIs). This article uses two case examples to illustrate the presentation, evaluation, and management of pulmonary and neurologic symptoms in two patients receiving PD-1–based therapy for non–small-cell lung cancer. These cases illustrate the challenges associated with recognizing pneumonitis and neuropathy in patients receiving ICIs for lung cancer. Although pneumonitis and neuropathy are relatively rare irAEs, they can have devastating or even fatal outcomes if not promptly recognized and managed appropriately. Specific use of guideline-based, multidisciplinary management is emphasized, as illustrated in the Immuno-Oncology Essentials Care Step Pathways.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14266-e14266 ◽  
Author(s):  
Sacha Rothschild ◽  
Ilaria Alborelli ◽  
Katharina Leonards ◽  
Laura P Leuenberger ◽  
Spasenija Savic Prince ◽  
...  

e14266 Background: In non-small cell lung cancer (NSCLC) immune checkpoint inhibitors (ICIs) significantly improve overall survival (OS). Tumor mutational burden (TMB) has emerged as a predictive biomarker for patients treated with ICIs. Here we evaluated the predictive power of TMB measured through / by the Oncomine Tumor Mutational Load (TML - Thermo Fisher Scientific) targeted sequencing assay in 71 NSCLC patients treated with ICIs. Methods: TMB was assessed retrospectively in 71 metastatic NSCLC patients receiving ICI therapy. Clinical data (RECIST 1.1) were collected and patients were characterized as either having durable clinical benefit (DCB) or no durable benefit (NDB). Additionally, genetic alterations and PD-L1 expression were assessed and compared with TMB and response rate. Results: TMB was significantly higher in patients with DCB compared to patients with NDB (median TMB = 9.2 versus 5.3 mutations/Mb, Mann-Whitney p = 0.014). 70% of patients with high TMB (cutoff = 3rd tertile, TMB ≥ 9.2) were responders (DCB) compared to 29% of patients with low TMB (cutoff = 1st tertile, TMB ≤ 4.5). TMB-high patients showed significantly longer progression-free survival (PFS) and OS (log rank test, p = .0030 for PFS and 0 .0375 for OS, respectively). Combining PD-L1 expression and TMB value increased the predictive power of TMB. Conclusions: Our results show that the TML panel is an effective tool to stratify patients for ICI treatment. We believe that a combination of biomarkers will maximize the precision of patient selection.


2019 ◽  
pp. 1-13 ◽  
Author(s):  
Matthew K. Stein ◽  
Manjari Pandey ◽  
Joanne Xiu ◽  
Hongseok Tae ◽  
Jeff Swensen ◽  
...  

PURPOSE Tumor mutational burden (TMB) is a developing biomarker in non–small-cell lung cancer (NSCLC). Little is known regarding differences between TMB and sample location, histology, or other biomarkers. METHODS A total of 3,424 unmatched NSCLC samples, including 2,351 lung adenocarcinomas (LUADs) and 1,073 lung squamous cell carcinomas (LUSCs), underwent profiling, including next-generation sequencing of 592 cancer-related genes, programmed death ligand 1 immunohistochemistry, and TMB. The rate TMB of 10 mutations per megabase (Mb) or greater was compared between primary and metastatic LUAD and LUSC. Molecular alteration frequency was compared at a cutoff of 10 mutations/Mb. RESULTS LUAD metastases were more likely to have a TMB of 10 mutations/Mb or greater compared with primary LUADs (38% v 25%; P < .001), and this difference was most pronounced with brain metastases (61% v 35% for other metastases; P < .001). The median TMB for LUAD brain metastases was 13 mutations/Mb compared with six mutations/Mb for primary LUADs. Variability existed for other LUAD metastasis sites, with adrenal metastases most likely to meet the cutoff of 10 mutations/Mb (51%) and bone metastases least likely to meet the cutoff (19%). TMB was more commonly 10 mutations/Mb or greater for LUSC primary tumors than for LUAD primary tumors (35% v 25%, respectively; P < .001). LUSC metastases were more likely to have a TMB of 10 mutations/Mb or greater than LUSC primary tumors. Poorly differentiated disease was more likely have a TMB of 10 mutations/Mb or greater when stratified by histology and primary tumor or metastasis. Site-specific molecular differences existed at this TMB cutoff including programmed death ligand 1 positivity and STK11 and KRAS mutation rate. CONCLUSION TMB is a site-specific biomarker in NSCLC with important spatial and histologic differences. TMB is more frequently 10 mutations/Mb or greater in LUAD and LUSC metastases and highest in LUAD brain metastases. Along this TMB cutoff, clinically informative distinctions exist in other tumor profiling characteristics. Further investigation is needed to expand on these findings.


Sign in / Sign up

Export Citation Format

Share Document