Nanotechnology-assisted microfluidic systems: from bench to bedside

Nanomedicine ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 237-258
Author(s):  
Navid Rabiee ◽  
Sepideh Ahmadi ◽  
Yousef Fatahi ◽  
Mohammad Rabiee ◽  
Mojtaba Bagherzadeh ◽  
...  

With significant advancements in research technologies, and an increasing global population, microfluidic and nanofluidic systems (such as point-of-care, lab-on-a-chip, organ-on-a-chip, etc) have started to revolutionize medicine. Devices that combine micron and nanotechnologies have increased sensitivity, precision and versatility for numerous medical applications. However, while there has been extensive research on microfluidic and nanofluidic systems, very few have experienced wide-spread commercialization which is puzzling and deserves our collective attention. For the above reasons, in this article, we review research advances that combine micro and nanotechnologies to create the next generation of nanomaterial-based microfluidic systems, the latest in their commercialization success and failure and highlight the value of these devices both in industry and in the laboratory.

Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 461
Author(s):  
Madjid Morsli ◽  
Quentin Kerharo ◽  
Jeremy Delerce ◽  
Pierre-Hugues Roche ◽  
Lucas Troude ◽  
...  

Current routine real-time PCR methods used for the point-of-care diagnosis of infectious meningitis do not allow for one-shot genotyping of the pathogen, as in the case of deadly Haemophilus influenzae meningitis. Real-time PCR diagnosed H. influenzae meningitis in a 22-year-old male patient, during his hospitalisation following a more than six-metre fall. Using an Oxford Nanopore Technologies real-time sequencing run in parallel to real-time PCR, we detected the H. influenzae genome directly from the cerebrospinal fluid sample in six hours. Furthermore, BLAST analysis of the sequence encoding for a partial DUF417 domain-containing protein diagnosed a non-b serotype, non-typeable H.influenzae belonging to lineage H. influenzae 22.1-21. The Oxford Nanopore metagenomic next-generation sequencing approach could be considered for the point-of-care diagnosis of infectious meningitis, by direct identification of pathogenic genomes and their genotypes/serotypes.


2018 ◽  
Vol 9 ◽  
Author(s):  
Ece Ergir ◽  
Barbara Bachmann ◽  
Heinz Redl ◽  
Giancarlo Forte ◽  
Peter Ertl

Lab on a Chip ◽  
2015 ◽  
Vol 15 (14) ◽  
pp. 3013-3020 ◽  
Author(s):  
Sara Mahshid ◽  
Mohammed Jalal Ahamed ◽  
Daniel Berard ◽  
Susan Amin ◽  
Robert Sladek ◽  
...  

We present a lab-on-a-chip for the next generation of single-cell genomics, performing full-cycle single-cell analysis by demonstrating mega-base pair genomic DNAs in nanochannels extracted in situ.


2021 ◽  
Author(s):  
Jewell N Walters ◽  
Blake Schouest ◽  
Ami Patel ◽  
Emma L Reuschel ◽  
Katherine Schultheis ◽  
...  

The enhanced transmissibility and immune evasion associated with emerging SARS-CoV-2 variants demands the development of next-generation vaccines capable of inducing superior protection amid a shifting pandemic landscape. Since a portion of the global population harbors some level of immunity from vaccines based on the original Wuhan-Hu-1 SARS-CoV-2 sequence or natural infection, an important question going forward is whether this immunity can be boosted by next-generation vaccines that target emerging variants while simultaneously maintaining long-term protection against existing strains. Here, we evaluated the immunogenicity of INO-4800, our synthetic DNA vaccine candidate for COVID-19 currently in clinical evaluation, and INO-4802, a next-generation DNA vaccine designed to broadly target emerging SARS-CoV-2 variants, as booster vaccines in nonhuman primates. Rhesus macaques primed over one year prior with the first-generation INO-4800 vaccine were boosted with either INO-4800 or INO-4802 in homologous or heterologous prime-boost regimens. Both boosting schedules led to an expansion of antibody responses which were characterized by improved neutralizing and ACE2 blocking activity across wild-type SARS-CoV-2 as well as multiple variants of concern. These data illustrate the durability of immunity following vaccination with INO-4800 and additionally support the use of either INO-4800 or INO-4802 in prime-boost regimens.


2020 ◽  
Author(s):  
Damian Carlson ◽  
Christian Cuevas ◽  
Jennifer De Lurio ◽  
Andrew Furman ◽  
Randy Hulshizer ◽  
...  

2016 ◽  
Vol 6 (3) ◽  
pp. 220
Author(s):  
Rebecca Suzanne Barney ◽  
Brandon T. Leader ◽  
Arthur Lee

1999 ◽  
Author(s):  
Nihat Okulan ◽  
Shekhar Bhansali ◽  
Arum Han ◽  
Saman Dharmatilleke ◽  
Jin-Woo Choi ◽  
...  

Abstract This center is currently working on the development of a remotely accessible generic microfluidic system (“lab on a chip”) for biological and biochemical analysis, based on electrochemical detection techniques. Modular microfluidic components, including micro reservoirs, microvalves, micropumps, filterless magnetic particle separators, biosensors and flowsensors, were fabricated and tested, and integrated on a system motherboard. Other air-to-liquid measurand concentrators and integrated sieve/filters are being explored in related efforts. The fabrication of these microfluidic components and the utilization of wax for low temperature assembly and even bonding is discussed.


2022 ◽  
pp. 375-383
Author(s):  
Ankur Kaushal ◽  
Amit Seth ◽  
Deepak Kala ◽  
Shagun Gupta ◽  
Lucky Krishnia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document