Recent advances in the design of cardiovascular materials for biomedical applications

2020 ◽  
Vol 15 (5) ◽  
pp. 1637-1645
Author(s):  
Xun-Hong Xu ◽  
Xue Yang ◽  
Cheng-Gen Zheng ◽  
Yong Cui

Biomaterials dominate the field of cardiovascular therapeutics, a multitude of which have been used to repair and replace injured heart tissue. This field has evolved beyond the simple selection of compatible materials and now focuses on the rational design of controlled structures that integrate with the cardiovascular system. However, the compatibility of these materials with the blood presents a major limitation to their clinical application. In this context, surface modification strategies can enhance blood compatibility and several recent advances in this area have emerged. This review summarizes the recent applications of biomaterials in cardiovascular therapies, the improvements in their biocompatibility and the surface modification technologies that have the potential to improve clinical outcomes.

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2896
Author(s):  
Sara Ferraris ◽  
Silvia Spriano ◽  
Alessandro Calogero Scalia ◽  
Andrea Cochis ◽  
Lia Rimondini ◽  
...  

Electrospinning is gaining increasing interest in the biomedical field as an eco-friendly and economic technique for production of random and oriented polymeric fibers. The aim of this review was to give an overview of electrospinning potentialities in the production of fibers for biomedical applications with a focus on the possibility to combine biomechanical and topographical stimuli. In fact, selection of the polymer and the eventual surface modification of the fibers allow selection of the proper chemical/biological signal to be administered to the cells. Moreover, a proper design of fiber orientation, dimension, and topography can give the opportunity to drive cell growth also from a spatial standpoint. At this purpose, the review contains a first introduction on potentialities of electrospinning for the obtainment of random and oriented fibers both with synthetic and natural polymers. The biological phenomena which can be guided and promoted by fibers composition and topography are in depth investigated and discussed in the second section of the paper. Finally, the recent strategies developed in the scientific community for the realization of electrospun fibers and for their surface modification for biomedical application are presented and discussed in the last section.


Nanoscale ◽  
2021 ◽  
Author(s):  
Parinaz Fathi ◽  
Parikshit Moitra ◽  
Madeleine M. McDonald ◽  
Mandy Brigitte Esch ◽  
Dipanjan Pan

Carbon dots are biocompatible nanoparticles suitable for a variety of biomedical applications. Careful selection of carbon dot precursors and surface modification techniques has allowed for the development of carbon dots...


2012 ◽  
Vol 66 (5) ◽  
Author(s):  
Chao Zhao ◽  
Ling-Yan Li ◽  
Ming-Ming Guo ◽  
Jie Zheng

AbstractPolymer thin films offer a versatile and ubiquitous platform for a wide variety of real-world applications in biomedicine, nanotechnology, catalysis, photovoltaic devices, and energy conversion and storage. Depending on the chemical composition of the polymers and the associated microenvironment, the physicochemical properties (biocompatibility, stability, wettability, adhesion, morphology, surface free energy, and others) of polymer films can be tuned for a specific application through precisely controlled surface synthesis and the incorporation of desirable and responsive functional groups. In this short review, we first summarise the methods most commonly used for the fabrication of polymer thin films. Then we discuss how these polymer thin films can be used in a selection of biomedical applications in antifouling materials and biosensors. Some directions for the rational design of polymer thin films to achieve a specific function or application are also provided.


Author(s):  
L. V. Postnikova ◽  
V. S. Pakseeva ◽  
M. E. Matantzeva

There are presented results of the expertise of professional suitability of workers of the steel industry with diseases of the cardiovascular system after selection of antihypertensive therapy.


Author(s):  
Nayab Sheikh ◽  
Muhammad Bilal Tahir ◽  
Nisar Fatima ◽  
Muhammad Sagir ◽  
Muhammad Pervaiz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document