scholarly journals SLC66 Lysosomal amino acid transporters in GtoPdb v.2021.2

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Gergely Gyimesi ◽  
Matthias A. Hediger

This is a family of 5 evolutionarily related proteins. Their structural similarities suggest that they are transporters. Biochemical evidence supports transporter activity for SLC66A1 (LAAT1) and SLC66A4 (CTNS; Cystinosin). The functions of the 3 remaining members of the family are undetermined.

2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Gergely Gyimesi

This is a family of 5 evolutionarily related proteins. Their structural similarities suggest that they are transporters. Biochemical evidence supports transporter activity for SLC66A1 (LAAT1) and SLC66A4 (CTNS; Cystinosin). The functions of the 3 remaining members of the family are undetermined.


1999 ◽  
Vol 63 (2) ◽  
pp. 293-307 ◽  
Author(s):  
Dirk Jan Slotboom ◽  
Wil N. Konings ◽  
Juke S. Lolkema

SUMMARY Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft and thus prevent neurotoxicity. The proteins belong to a large and widespread family of secondary transporters, including bacterial glutamate, serine, and C4-dicarboxylate transporters; mammalian neutral-amino-acid transporters; and an increasing number of bacterial, archaeal, and eukaryotic proteins that have not yet been functionally characterized. Sixty members of the glutamate transporter family were found in the databases on the basis of sequence homology. The amino acid sequences of the carriers have diverged enormously. Homology between the members of the family is most apparent in a stretch of approximately 150 residues in the C-terminal part of the proteins. This region contains four reasonably well-conserved sequence motifs, all of which have been suggested to be part of the translocation pore or substrate binding site. Phylogenetic analysis of the C-terminal stretch revealed the presence of five subfamilies with characterized members: (i) the eukaryotic glutamate transporters, (ii) the bacterial glutamate transporters, (iii) the eukaryotic neutral-amino-acid transporters, (iv) the bacterial C4-dicarboxylate transporters, and (v) the bacterial serine transporters. A number of other subfamilies that do not contain characterized members have been defined. In contrast to their amino acid sequences, the hydropathy profiles of the members of the family are extremely well conserved. Analysis of the hydropathy profiles has suggested that the glutamate transporters have a global structure that is unique among secondary transporters. Experimentally, the unique structure of the transporters was recently confirmed by membrane topology studies. Although there is still controversy about part of the topology, the most likely model predicts the presence of eight membrane-spanning α-helices and a loop-pore structure which is unique among secondary transporters but may resemble loop-pores found in ion channels. A second distinctive structural feature is the presence of a highly amphipathic membrane-spanning helix that provides a hydrophilic path through the membrane. Recent data from analysis of site-directed mutants and studies on the mechanism and pharmacology of the transporters are discussed in relation to the structural model.


2018 ◽  
Author(s):  
Kathryn E. R. Parker ◽  
Stephen J. Fairweather ◽  
Esther Rajendran ◽  
Martin Blume ◽  
Malcolm J. McConville ◽  
...  

AbstractApicomplexan parasites are auxotrophic for a range of amino acids which must be salvaged from their host cells, either through direct uptake or degradation of host proteins. Here, we describe a family of plasma membrane-localized amino acid transporters, termed the Apicomplexan Amino acid Transporters (ApiATs), that are ubiquitous in apicomplexan parasites. Functional characterization of the ApiATs ofToxoplasma gondiiindicate that several of these transporters are important for intracellular growth of the tachyzoite stage of the parasite, which is responsible for acute infections. We demonstrate that the ApiAT proteinTgApiAT5-3 is an exchanger for aromatic and large neutral amino acids, with particular importance for L-tyrosine scavenging and amino acid homeostasis, and thatTgApiAT5-3 is critical for parasite virulence. Our data indicate thatT. gondiiexpresses additional proteins involved in the uptake of aromatic amino acids, and we present a model for the uptake and homeostasis of these amino acids. Our findings identify a family of amino acid transporters in apicomplexans, and highlight the importance of amino acid scavenging for the biology of this important phylum of intracellular parasites.Author SummaryThe Apicomplexa comprise a large number of parasitic protozoa that have obligate intracellular lifestyles and cause significant human and animal diseases, including malaria, cryptosporidiosis, toxoplasmosis, coccidiosis in poultry, and various cattle fevers. Apicomplexans must scavenge essential nutrients from their hosts in order to proliferate and cause disease, including a range of amino acids. The direct uptake of these nutrients is presumed to be mediated by transporter proteins located in the plasma membrane of intracellular stages, although the identities of these proteins are poorly defined. Using a combination of bioinformatic, genetic, cell biological, and physiological approaches, we have characterized a family of plasma membrane-localized transporter proteins that we have called the Apicomplexan Amino acid Transporters (ApiATs). The family is found in apicomplexans and their closest free-living relatives. We show thatTgApiAT5-3, a member of the family in the apicomplexanToxoplasma gondii, is an exchanger for aromatic and large neutral amino acids. In particular, it is critical for uptake of tyrosine, and for parasite virulence in a mouse infection model. We conclude that ApiATs are a family of plasma membrane transporters that play crucial roles in amino acid scavenging by apicomplexan parasites.


2005 ◽  
Vol 33 (1) ◽  
pp. 261-264 ◽  
Author(s):  
P. Poulsen ◽  
B. Wu ◽  
R.F. Gaber ◽  
Kim Ottow ◽  
H.A. Andersen ◽  
...  

Saccharomyces cerevisiae senses extracellular amino acids using two members of the family of amino acid transporters, Gap1 or Ssy1; aspects of the latter are reviewed here. Despite resemblance with bona fide transporters, Ssy1 appears unable to facilitate transport. Exposure of yeast to amino acids results in Ssy1-dependent transcriptional induction of several genes, in particular some encoding amino acid transporters. Amino acids differ strongly in their potency, leucine being the most potent one known. Using a selection system in which potassium uptake was made dependent on amino acid signalling, our laboratory has obtained and described gain-of-function mutations in SSY1. Some alleles conferred inducer-independent signalling; others increased apparent affinity for inducers. These results revealed that amino acid transport is not required for signalling and support the notion that sensing by Ssy1 occurs via its direct interaction with extracellular amino acids. Current work includes development of quantitative assays of sensing. We use the finding by Per Ljungdahl's laboratory that the signal transduction from Ssy1 involves proteolytic removal of an inhibitory part of the transcriptional activator Stp1. Protein-A Z-domain fused to the C-terminus of Stp1 and Western analysis using antibody against horseradish peroxidase allow quantification of sensing.


2019 ◽  
Vol 26 (7) ◽  
pp. 1185-1223 ◽  
Author(s):  
Carolina I. Ghanem ◽  
Jose E. Manautou

Liver transporters play an important role in the pharmacokinetics and disposition of pharmaceuticals, environmental contaminants, and endogenous compounds. Among them, the family of ATP-Binding Cassette (ABC) transporters is the most important due to its role in the transport of endo- and xenobiotics. The ABCC sub-family is the largest one, consisting of 13 members that include the cystic fibrosis conductance regulator (CFTR/ABCC7); the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) and the multidrug resistanceassociated proteins (MRPs). The MRP-related proteins can collectively confer resistance to natural, synthetic drugs and their conjugated metabolites, including platinum-containing compounds, folate anti-metabolites, nucleoside and nucleotide analogs, among others. MRPs can be also catalogued into "long" (MRP1/ABCC1, -2/C2, -3/C3, -6/C6, and -7/C10) and "short" (MRP4/C4, -5/C5, -8/C11, -9/C12, and -10/C13) categories. While MRP2/ABCC2 is expressed in the canalicular pole of hepatocytes, all others are located in the basolateral membrane. In this review, we summarize information from studies examining the changes in expression and regulation of the basolateral hepatic transporter MPR3/ABCC3 by xenobiotics and during various pathophysiological conditions. We also focus, primarily, on the consequences of such changes in the pharmacokinetic, pharmacodynamic and/or toxicity of different drugs of clinical use transported by MRP3.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 125
Author(s):  
Uğur Kahya ◽  
Ayşe Sedef Köseer ◽  
Anna Dubrovska

Tumorigenesis is driven by metabolic reprogramming. Oncogenic mutations and epigenetic alterations that cause metabolic rewiring may also upregulate the reactive oxygen species (ROS). Precise regulation of the intracellular ROS levels is critical for tumor cell growth and survival. High ROS production leads to the damage of vital macromolecules, such as DNA, proteins, and lipids, causing genomic instability and further tumor evolution. One of the hallmarks of cancer metabolism is deregulated amino acid uptake. In fast-growing tumors, amino acids are not only the source of energy and building intermediates but also critical regulators of redox homeostasis. Amino acid uptake regulates the intracellular glutathione (GSH) levels, endoplasmic reticulum stress, unfolded protein response signaling, mTOR-mediated antioxidant defense, and epigenetic adaptations of tumor cells to oxidative stress. This review summarizes the role of amino acid transporters as the defender of tumor antioxidant system and genome integrity and discusses them as promising therapeutic targets and tumor imaging tools.


2021 ◽  
Vol 4 (3) ◽  
pp. 51
Author(s):  
Satish Kantipudi ◽  
Daniel Harder ◽  
Sara Bonetti ◽  
Dimitrios Fotiadis ◽  
Jean-Marc Jeckelmann

Heterodimeric amino acid transporters (HATs) are protein complexes composed of two subunits, a heavy and a light subunit belonging to the solute carrier (SLC) families SLC3 and SLC7. HATs transport amino acids and derivatives thereof across the plasma membrane. The human HAT 4F2hc-LAT1 is composed of the type-II membrane N-glycoprotein 4F2hc (SLC3A2) and the L-type amino acid transporter LAT1 (SLC7A5). 4F2hc-LAT1 is medically relevant, and its dysfunction and overexpression are associated with autism and tumor progression. Here, we provide a general applicable protocol on how to screen for the best membrane transport protein-expressing clone in terms of protein amount and function using Pichia pastoris as expression host. Furthermore, we describe an overexpression and purification procedure for the production of the HAT 4F2hc-LAT1. The isolated heterodimeric complex is pure, correctly assembled, stable, binds the substrate L-leucine, and is thus properly folded. Therefore, this Pichia pastoris-derived recombinant human 4F2hc-LAT1 sample can be used for downstream biochemical and biophysical characterizations.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2114
Author(s):  
Yusheng Liang ◽  
Nana Ma ◽  
Danielle N. Coleman ◽  
Fang Liu ◽  
Yu Li ◽  
...  

The objective was to perform a proof-of-principle study to evaluate the effects of methionine (Met) and arginine (Arg) supply on protein abundance of amino acid, insulin signaling, and glutathione metabolism-related proteins in subcutaneous adipose tissue (SAT) explants under ceramide (Ce) challenge. SAT from four lactating Holstein cows was incubated with one of the following media: ideal profile of amino acid as the control (IPAA; Lys:Met 2.9:1, Lys:Arg 2:1), increased Met (incMet; Lys:Met 2.5:1), increased Arg (incArg; Lys:Arg 1:1), or incMet plus incArg (Lys:Met 2.5:1 Lys:Arg 1:1) with or without 100 μM exogenous cell-permeable Ce (N-Acetyl-d-sphingosine). Ceramide stimulation downregulated the overall abundance of phosphorylated (p) protein kinase B (AKT), p-mechanistic target of rapamycin (mTOR), and p-eukaryotic elongation factor 2 (eEF2). Without Ce stimulation, increased Met, Arg, or Met + Arg resulted in lower p-mTOR. Compared with control SAT stimulated with Ce, increased Met, Arg, or Met + Arg resulted in greater activation of mTOR (p-mTOR/total mTOR) and AKT (p-AKT/total AKT), with a more pronounced response due to Arg. The greatest protein abundance of glutathione S-transferase Mu 1 (GSTM1) was detected in response to increased Met supply during Ce stimulation. Ceramide stimulation decreased the overall protein abundance of the Na-coupled neutral amino acid transporter SLC38A1 and branched-chain alpha-ketoacid dehydrogenase kinase (BCKDK). However, compared with controls, increased Met or Arg supply attenuated the downregulation of BCKDK induced by Ce. Circulating ceramides might affect amino acid, insulin signaling, and glutathione metabolism in dairy cow adipose tissue. Further in vivo studies are needed to confirm the role of rumen-protected amino acids in regulating bovine adipose function.


Sign in / Sign up

Export Citation Format

Share Document