scholarly journals Corticotropin-releasing factor receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Frank M. Dautzenberg ◽  
Dimitri E. Grigoriadis ◽  
Richard L. Hauger ◽  
Victoria B. Risbrough ◽  
Thomas Steckler ◽  
...  

Corticotropin-releasing factor (CRF, nomenclature as agreed by the NC-IUPHAR subcommittee on Corticotropin-releasing Factor Receptors [30]) receptors are activated by the endogenous peptides corticotrophin-releasing hormone, a 41 amino-acid peptide, urocortin 1, 40 amino-acids, urocortin 2, 38 amino-acids and urocortin 3, 38 amino-acids. CRF1 and CRF2 receptors are activated non-selectively by CRH and UCN. CRF2 receptors are selectively activated by UCN2 and UCN3. Binding to CRF receptors can be conducted using radioligands [125I]Tyr0-CRF or [125I]Tyr0-sauvagine with Kd values of 0.1-0.4 nM. CRF1 and CRF2 receptors are non-selectively antagonized by α-helical CRF, D-Phe-CRF-(12-41) and astressin. CRF1 receptors are selectively antagonized by small molecules NBI27914, R121919, antalarmin, CP 154,526, CP 376,395. CRF2 receptors are selectively antagonized by antisauvagine and astressin 2B.

2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Anthony P. Davenport ◽  
Stephen A. Douglas ◽  
Alain Fournier ◽  
Adel Giaid ◽  
Henry Krum ◽  
...  

The urotensin-II (U-II) receptor (UT, nomenclature as agreed by the NC-IUPHAR Subcommittee on the Urotensin receptor [26, 36, 89]) is activated by the endogenous dodecapeptide urotensin-II, originally isolated from the urophysis, the endocrine organ of the caudal neurosecretory system of teleost fish [7, 88]. Several structural forms of U-II exist in fish and amphibians. The goby orthologue was used to identify U-II as the cognate ligand for the predicted receptor encoded by the rat gene gpr14 [20, 62, 68, 70]. Human urotensin-II, an 11-amino-acid peptide [20], retains the cyclohexapeptide sequence of goby U-II that is thought to be important in ligand binding [53, 11]. This sequence is also conserved in the deduced amino-acid sequence of rat urotensin-II (14 amino-acids) and mouse urotensin-II (14 amino-acids), although the N-terminal is more divergent from the human sequence [19]. A second endogenous ligand for the UT has been discovered in rat [83]. This is the urotensin II-related peptide, an octapeptide that is derived from a different gene, but shares the C-terminal sequence (CFWKYCV) common to U-II from other species. Identical sequences to rat urotensin II-related peptide are predicted for the mature mouse and human peptides [32]. UT exhibits relatively high sequence identity with somatostatin, opioid and galanin receptors [89].


1991 ◽  
Vol 6 (2) ◽  
pp. 147-152 ◽  
Author(s):  
K. Collyear ◽  
S. I. Girgis ◽  
G. Saunders ◽  
I. MacIntyre ◽  
G. Holt

ABSTRACT We have isolated from a bovine genomic library a clone which contains the calcitonin (CT) and CT gene-related peptide (CGRP) sequences, using probes representing the human CT and CGRP sequences. Sequence analysis has identified the nucleotide sequence coding for bovine CT, its C-terminal flanking peptide and bovine CGRP. The deduced amino acid sequence of bovine CGRP revealed a significant homology with other CGRPs so far reported. It differs by only one amino acid from rat CGRPα and porcine CGRP, and by three and four amino acids from human CGRPβ and α respectively. Bovine CT has, however, only 14 out of 32 residues in common with human CT. As in the human CT precursor, the C-terminal flanking peptide of bovine CT precursor is a 21 amino acid peptide. It shares only 11 residues in common with its human counterpart. This study thus provides further evidence that CGRP, in contrast to CT and its C-terminal flanking peptide, is a highly conserved molecule.


1993 ◽  
Vol 13 (1) ◽  
pp. 123-132
Author(s):  
A D Sharrocks ◽  
H Gille ◽  
P E Shaw

The serum response factor (p67SRF) binds to a palindromic sequence in the c-fos serum response element (SRE). A second protein, p62TCF binds in conjunction with p67SRF to form a ternary complex, and it is through this complex that growth factor-induced transcriptional activation of c-fos is thought to take place. A 90-amino-acid peptide, coreSRF, is capable for dimerizing, binding DNA, and recruiting p62TCF. By using extensive site-directed mutagenesis we have investigated the role of individual coreSRF amino acids in DNA binding. Mutant phenotypes were defined by gel retardation and cross-linking analyses. Our results have identified residues essential for either DNA binding or dimerization. Three essential basic amino acids whose conservative mutation severely reduced DNA binding were identified. Evidence which is consistent with these residues being on the face of a DNA binding alpha-helix is presented. A phenylalanine residue and a hexameric hydrophobic box are identified as essential for dimerization. The amino acid phasing is consistent with the dimerization interface being presented as a continuous region on a beta-strand. A putative second alpha-helix acts as a linker between these two regions. This study indicates that p67SRF is a member of a protein family which, in common with many DNA binding proteins, utilize an alpha-helix for DNA binding. However, this alpha-helix is contained within a novel domain structure.


2002 ◽  
Vol 68 (8) ◽  
pp. 3830-3840 ◽  
Author(s):  
Shinichi Kawamoto ◽  
Jun Shima ◽  
Rumi Sato ◽  
Tomoko Eguchi ◽  
Sadahiro Ohmomo ◽  
...  

ABSTRACT Mundticin KS, a bacteriocin produced by Enterococcus mundtii NFRI 7393 isolated from grass silage in Thailand, is active against closely related lactic acid bacteria and the food-borne pathogen Listeria monocytogenes. In this study, biochemical and genetic characterization of mundticin KS was done. Mundticin KS was purified to homogeneity by ammonium sulfate precipitation, sequential ion-exchange chromatography, and solid-phase extraction. The gene cluster (mun locus) for mundticin KS production was cloned, and DNA sequencing revealed that the mun locus consists of three genes, designated munA, munB, and munC. The munA gene encodes a 58-amino-acid mundticin KS precursor, munB encodes a protein of 674 amino acids involved in translocation and processing of the bacteriocin, and munC encodes a mundticin KS immunity protein of 98 amino acids. Amino acid and nucleotide sequencing revealed the complete, unambiguous primary structure of mundticin KS; mundticin KS comprises a 43-amino-acid peptide with an amino acid sequence similar to that of mundticin ATO6 produced by E. mundtii ATO6. Mundticin KS and mundticin ATO6 are distinguished by the inversion of the last two amino acids at their respective C termini. These two mundticins were expressed in Escherichia coli as recombinant peptides and found to be different in activity against certain Lactobacillus strains, such as Lactobacillus plantarum and Lactobacillus curvatus. Mundticin KS was successfully expressed by transformation with the recombinant plasmid containing the mun locus in heterogeneous hosts such as E. faecium, L. curvatus, and Lactococcus lactis. Based on our results, the mun locus is located on a 50-kb plasmid, pML1, of E. mundtii NFRI 7393.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Andrew L. Gundlach ◽  
Philip J. Ryan

Galanin receptors (provisional nomenclature as recommended by NC-IUPHAR [57]) are activated by the endogenous peptides galanin and galanin-like peptide. Human galanin is a 30 amino-acid non-amidated peptide [52]; in other species, it is 29 amino acids long and C-terminally amidated. Amino acids 1-14 of galanin are highly conserved in mammals, birds, reptiles, amphibia and fish. Shorter peptide species (e.g. human galanin-1-19 [21] and porcine galanin-5–29 [170]) and N-terminally extended forms (e.g. N-terminally seven and nine residue elongated forms of porcine galanin [22, 170]) have been reported. More recently, the newly-identified peptide, spexin (SPX), has been reported to activate human GAL2 and GAL3 (but not GAL1) receptors in heterologous expression systems; and to alter GAL2/3 receptor-related behaviours in animals [89].


2010 ◽  
Vol 432 (2) ◽  
pp. 313-321 ◽  
Author(s):  
Alexander V. Peskin ◽  
Andrew G. Cox ◽  
Péter Nagy ◽  
Philip E. Morgan ◽  
Mark B. Hampton ◽  
...  

Prxs (peroxiredoxins) are a ubiquitous family of cysteine-dependent peroxidases that react rapidly with H2O2 and alkyl hydroperoxides and provide defence against these reactive oxidants. Hydroperoxides are also formed on amino acids and proteins during oxidative stress, and they too are a potential cause of biological damage. We have investigated whether Prxs react with amino acid, peptide and protein hydroperoxides, and whether the reactions are sufficiently rapid for these enzymes to provide antioxidant protection against these oxidants. Isolated Prx2, which is a cytosolic protein, and Prx3, which resides within mitochondria, were reacted with a selection of hydroperoxides generated by γ-radiolysis or singlet oxygen, on free amino acids, peptides and proteins. Reactions were followed by measuring the accumulation of disulfide-linked Prx dimers, via non-reducing SDS/PAGE, or the loss of the corresponding hydroperoxide, using quench-flow and LC (liquid chromatography)/MS. All the hydroperoxides induced rapid oxidation, with little difference in reactivity between Prx2 and Prx3. N-acetyl leucine hydroperoxides reacted with Prx2 with a rate constant of 4×104 M−1·s−1. Hydroperoxides present on leucine, isoleucine or tyrosine reacted at a comparable rate, whereas histidine hydroperoxides were ~10-fold less reactive. Hydroperoxides present on lysozyme and BSA reacted with rate constants of ~100 M−1·s−1. Addition of an uncharged derivative of leucine hydroperoxide to intact erythrocytes caused Prx2 oxidation with no concomitant loss in GSH, as did BSA hydroperoxide when added to concentrated erythrocyte lysate. Prxs are therefore favoured intracellular targets for peptide/protein hydroperoxides and have the potential to detoxify these species in vivo.


1993 ◽  
Vol 13 (1) ◽  
pp. 123-132 ◽  
Author(s):  
A D Sharrocks ◽  
H Gille ◽  
P E Shaw

The serum response factor (p67SRF) binds to a palindromic sequence in the c-fos serum response element (SRE). A second protein, p62TCF binds in conjunction with p67SRF to form a ternary complex, and it is through this complex that growth factor-induced transcriptional activation of c-fos is thought to take place. A 90-amino-acid peptide, coreSRF, is capable for dimerizing, binding DNA, and recruiting p62TCF. By using extensive site-directed mutagenesis we have investigated the role of individual coreSRF amino acids in DNA binding. Mutant phenotypes were defined by gel retardation and cross-linking analyses. Our results have identified residues essential for either DNA binding or dimerization. Three essential basic amino acids whose conservative mutation severely reduced DNA binding were identified. Evidence which is consistent with these residues being on the face of a DNA binding alpha-helix is presented. A phenylalanine residue and a hexameric hydrophobic box are identified as essential for dimerization. The amino acid phasing is consistent with the dimerization interface being presented as a continuous region on a beta-strand. A putative second alpha-helix acts as a linker between these two regions. This study indicates that p67SRF is a member of a protein family which, in common with many DNA binding proteins, utilize an alpha-helix for DNA binding. However, this alpha-helix is contained within a novel domain structure.


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Anthony P. Davenport ◽  
Birgitte Holst ◽  
Matthias Kleinz ◽  
Janet J. Maguire ◽  
Bjørn B. Sivertsen

The ghrelin receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee for the Ghrelin receptor [18]) is activated by a 28 amino-acid peptide originally isolated from rat stomach, where it is cleaved from a 117 amino-acid precursor (GHRL, Q9UBU3). The human gene encoding the precursor peptide has 83% sequence homology to rat prepro-ghrelin, although the mature peptides from rat and human differ by only two amino acids [70]. Alternative splicing results in the formation of a second peptide, [des-Gln14]ghrelin with equipotent biological activity [48]. A unique post-translational modification (octanoylation of Ser3, catalysed by ghrelin Ο-acyltransferase (MBOAT4, Q96T53) [127] occurs in both peptides, essential for full activity in binding to ghrelin receptors in the hypothalamus and pituitary, and for the release of growth hormone from the pituitary [56]. Structure activity studies showed the first five N-terminal amino acids to be the minimum required for binding [4], and receptor mutagenesis has indicated overlap of the ghrelin binding site with those for small molecule agonists and allosteric modulators of ghrelin function [43]. In cell systems, the ghrelin receptor is constitutively active [44], but this is abolished by a naturally occurring mutation (A204E) that results in decreased cell surface receptor expression and is associated with familial short stature [88].


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Andrew L. Gundlach ◽  
Philip J. Ryan

Galanin receptors (provisional nomenclature as recommended by NC-IUPHAR [56]) are activated by the endogenous peptides galanin and galanin-like peptide. Human galanin is a 30 amino-acid non-amidated peptide [51]; in other species, it is 29 amino acids long and C-terminally amidated. Amino acids 1–14 of galanin are highly conserved in mammals, birds, reptiles, amphibia and fish. Shorter peptide species (e.g. human galanin-1–19 [21] and porcine galanin-5–29 [166]) and N-terminally extended forms (e.g. N-terminally seven and nine residue elongated forms of porcine galanin [22, 166]) have been reported.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Anthony P. Davenport ◽  
Birgitte Holst ◽  
Matthias Kleinz ◽  
Janet J. Maguire ◽  
Bjørn B. Sivertsen

The ghrelin receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee for the Ghrelin receptor [19]) is activated by a 28 amino-acid peptide originally isolated from rat stomach, where it is cleaved from a 117 amino-acid precursor (GHRL, Q9UBU3). The human gene encoding the precursor peptide has 83% sequence homology to rat prepro-ghrelin, although the mature peptides from rat and human differ by only two amino acids [74]. Alternative splicing results in the formation of a second peptide, [des-Gln14]ghrelin with equipotent biological activity [49]. A unique post-translational modification (octanoylation of Ser3, catalysed by ghrelin Ο-acyltransferase (MBOAT4, Q96T53) [133] occurs in both peptides, essential for full activity in binding to ghrelin receptors in the hypothalamus and pituitary, and for the release of growth hormone from the pituitary [58]. Structure activity studies showed the first five N-terminal amino acids to be the minimum required for binding [4], and receptor mutagenesis has indicated overlap of the ghrelin binding site with those for small molecule agonists and allosteric modulators of ghrelin function [44]. An endogenous antagonist and inverse agonist called Liver enriched antimicrobial peptide 2 (Leap2), expressed primarily in hepatocytes and in enterocytes of the proximal intestine [35, 68] inhibits ghrelin receptor-induced GH secretion and food intake [35]. The secretion of Leap2 and ghrelin is inversely regulated under various metabolic conditions [71]. In cell systems, the ghrelin receptor is constitutively active [45], but this is abolished by a naturally occurring mutation (A204E) that results in decreased cell surface receptor expression and is associated with familial short stature [93].


Sign in / Sign up

Export Citation Format

Share Document