scholarly journals Ghrelin receptor in GtoPdb v.2021.3

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Anthony P. Davenport ◽  
Birgitte Holst ◽  
Matthias Kleinz ◽  
Janet J. Maguire ◽  
Bjørn B. Sivertsen

The ghrelin receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee for the Ghrelin receptor [19]) is activated by a 28 amino-acid peptide originally isolated from rat stomach, where it is cleaved from a 117 amino-acid precursor (GHRL, Q9UBU3). The human gene encoding the precursor peptide has 83% sequence homology to rat prepro-ghrelin, although the mature peptides from rat and human differ by only two amino acids [74]. Alternative splicing results in the formation of a second peptide, [des-Gln14]ghrelin with equipotent biological activity [49]. A unique post-translational modification (octanoylation of Ser3, catalysed by ghrelin Ο-acyltransferase (MBOAT4, Q96T53) [133] occurs in both peptides, essential for full activity in binding to ghrelin receptors in the hypothalamus and pituitary, and for the release of growth hormone from the pituitary [58]. Structure activity studies showed the first five N-terminal amino acids to be the minimum required for binding [4], and receptor mutagenesis has indicated overlap of the ghrelin binding site with those for small molecule agonists and allosteric modulators of ghrelin function [44]. An endogenous antagonist and inverse agonist called Liver enriched antimicrobial peptide 2 (Leap2), expressed primarily in hepatocytes and in enterocytes of the proximal intestine [35, 68] inhibits ghrelin receptor-induced GH secretion and food intake [35]. The secretion of Leap2 and ghrelin is inversely regulated under various metabolic conditions [71]. In cell systems, the ghrelin receptor is constitutively active [45], but this is abolished by a naturally occurring mutation (A204E) that results in decreased cell surface receptor expression and is associated with familial short stature [93].

2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Anthony P. Davenport ◽  
Birgitte Holst ◽  
Matthias Kleinz ◽  
Janet J. Maguire ◽  
Bjørn B. Sivertsen

The ghrelin receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee for the Ghrelin receptor [18]) is activated by a 28 amino-acid peptide originally isolated from rat stomach, where it is cleaved from a 117 amino-acid precursor (GHRL, Q9UBU3). The human gene encoding the precursor peptide has 83% sequence homology to rat prepro-ghrelin, although the mature peptides from rat and human differ by only two amino acids [70]. Alternative splicing results in the formation of a second peptide, [des-Gln14]ghrelin with equipotent biological activity [48]. A unique post-translational modification (octanoylation of Ser3, catalysed by ghrelin Ο-acyltransferase (MBOAT4, Q96T53) [127] occurs in both peptides, essential for full activity in binding to ghrelin receptors in the hypothalamus and pituitary, and for the release of growth hormone from the pituitary [56]. Structure activity studies showed the first five N-terminal amino acids to be the minimum required for binding [4], and receptor mutagenesis has indicated overlap of the ghrelin binding site with those for small molecule agonists and allosteric modulators of ghrelin function [43]. In cell systems, the ghrelin receptor is constitutively active [44], but this is abolished by a naturally occurring mutation (A204E) that results in decreased cell surface receptor expression and is associated with familial short stature [88].


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Anthony P. Davenport ◽  
Stephen A. Douglas ◽  
Alain Fournier ◽  
Adel Giaid ◽  
Henry Krum ◽  
...  

The urotensin-II (U-II) receptor (UT, nomenclature as agreed by the NC-IUPHAR Subcommittee on the Urotensin receptor [26, 36, 89]) is activated by the endogenous dodecapeptide urotensin-II, originally isolated from the urophysis, the endocrine organ of the caudal neurosecretory system of teleost fish [7, 88]. Several structural forms of U-II exist in fish and amphibians. The goby orthologue was used to identify U-II as the cognate ligand for the predicted receptor encoded by the rat gene gpr14 [20, 62, 68, 70]. Human urotensin-II, an 11-amino-acid peptide [20], retains the cyclohexapeptide sequence of goby U-II that is thought to be important in ligand binding [53, 11]. This sequence is also conserved in the deduced amino-acid sequence of rat urotensin-II (14 amino-acids) and mouse urotensin-II (14 amino-acids), although the N-terminal is more divergent from the human sequence [19]. A second endogenous ligand for the UT has been discovered in rat [83]. This is the urotensin II-related peptide, an octapeptide that is derived from a different gene, but shares the C-terminal sequence (CFWKYCV) common to U-II from other species. Identical sequences to rat urotensin II-related peptide are predicted for the mature mouse and human peptides [32]. UT exhibits relatively high sequence identity with somatostatin, opioid and galanin receptors [89].


1991 ◽  
Vol 6 (2) ◽  
pp. 147-152 ◽  
Author(s):  
K. Collyear ◽  
S. I. Girgis ◽  
G. Saunders ◽  
I. MacIntyre ◽  
G. Holt

ABSTRACT We have isolated from a bovine genomic library a clone which contains the calcitonin (CT) and CT gene-related peptide (CGRP) sequences, using probes representing the human CT and CGRP sequences. Sequence analysis has identified the nucleotide sequence coding for bovine CT, its C-terminal flanking peptide and bovine CGRP. The deduced amino acid sequence of bovine CGRP revealed a significant homology with other CGRPs so far reported. It differs by only one amino acid from rat CGRPα and porcine CGRP, and by three and four amino acids from human CGRPβ and α respectively. Bovine CT has, however, only 14 out of 32 residues in common with human CT. As in the human CT precursor, the C-terminal flanking peptide of bovine CT precursor is a 21 amino acid peptide. It shares only 11 residues in common with its human counterpart. This study thus provides further evidence that CGRP, in contrast to CT and its C-terminal flanking peptide, is a highly conserved molecule.


1993 ◽  
Vol 13 (1) ◽  
pp. 123-132
Author(s):  
A D Sharrocks ◽  
H Gille ◽  
P E Shaw

The serum response factor (p67SRF) binds to a palindromic sequence in the c-fos serum response element (SRE). A second protein, p62TCF binds in conjunction with p67SRF to form a ternary complex, and it is through this complex that growth factor-induced transcriptional activation of c-fos is thought to take place. A 90-amino-acid peptide, coreSRF, is capable for dimerizing, binding DNA, and recruiting p62TCF. By using extensive site-directed mutagenesis we have investigated the role of individual coreSRF amino acids in DNA binding. Mutant phenotypes were defined by gel retardation and cross-linking analyses. Our results have identified residues essential for either DNA binding or dimerization. Three essential basic amino acids whose conservative mutation severely reduced DNA binding were identified. Evidence which is consistent with these residues being on the face of a DNA binding alpha-helix is presented. A phenylalanine residue and a hexameric hydrophobic box are identified as essential for dimerization. The amino acid phasing is consistent with the dimerization interface being presented as a continuous region on a beta-strand. A putative second alpha-helix acts as a linker between these two regions. This study indicates that p67SRF is a member of a protein family which, in common with many DNA binding proteins, utilize an alpha-helix for DNA binding. However, this alpha-helix is contained within a novel domain structure.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Kai-Yao Huang ◽  
Fang-Yu Hung ◽  
Hui-Ju Kao ◽  
Hui-Hsuan Lau ◽  
Shun-Long Weng

Abstract Background Protein phosphoglycerylation, the addition of a 1,3-bisphosphoglyceric acid (1,3-BPG) to a lysine residue of a protein and thus to form a 3-phosphoglyceryl-lysine, is a reversible and non-enzymatic post-translational modification (PTM) and plays a regulatory role in glucose metabolism and glycolytic process. As the number of experimentally verified phosphoglycerylated sites has increased significantly, statistical or machine learning methods are imperative for investigating the characteristics of phosphoglycerylation sites. Currently, research into phosphoglycerylation is very limited, and only a few resources are available for the computational identification of phosphoglycerylation sites. Result We present a bioinformatics investigation of phosphoglycerylation sites based on sequence-based features. The TwoSampleLogo analysis reveals that the regions surrounding the phosphoglycerylation sites contain a high relatively of positively charged amino acids, especially in the upstream flanking region. Additionally, the non-polar and aliphatic amino acids are more abundant surrounding phosphoglycerylated lysine following the results of PTM-Logo, which may play a functional role in discriminating between phosphoglycerylation and non-phosphoglycerylation sites. Many types of features were adopted to build the prediction model on the training dataset, including amino acid composition, amino acid pair composition, positional weighted matrix and position-specific scoring matrix. Further, to improve the predictive power, numerous top features ranked by F-score were considered as the final combination for classification, and thus the predictive models were trained using DT, RF and SVM classifiers. Evaluation by five-fold cross-validation showed that the selected features was most effective in discriminating between phosphoglycerylated and non-phosphoglycerylated sites. Conclusion The SVM model trained with the selected sequence-based features performed well, with a sensitivity of 77.5%, a specificity of 73.6%, an accuracy of 74.9%, and a Matthews Correlation Coefficient value of 0.49. Furthermore, the model also consistently provides the effective performance in independent testing set, yielding sensitivity of 75.7% and specificity of 64.9%. Finally, the model has been implemented as a web-based system, namely iDPGK, which is now freely available at http://mer.hc.mmh.org.tw/iDPGK/.


Endocrinology ◽  
2012 ◽  
Vol 153 (9) ◽  
pp. 4304-4316 ◽  
Author(s):  
Katie Leach ◽  
Adriel Wen ◽  
Anna E. Davey ◽  
Patrick M. Sexton ◽  
Arthur D Conigrave ◽  
...  

More than 200 naturally occurring mutations have been identified in the human CaSR, which have been linked to diseases involving dysregulation of extracellular Ca2+ homeostasis. These mutations have classically been termed “loss-” or “gain-of-function” mutations, which is an oversimplification given that amino acid changes can alter numerous molecular properties of a receptor. We thus sought to characterize the effects of 21 clinically relevant mutations, the majority located in the heptahelical domains and extracellular loop regions of the CaSR, using flow cytometry to measure cell surface receptor expression levels, and measurements of intracellular Ca2+ mobilization and ERK1/2 phosphorylation to monitor receptor signaling. We identified distinct molecular phenotypes caused by these naturally occurring amino acid substitutions, which included combinations of loss- and gain-of-expression and changes in intrinsic signaling capacity. Importantly, we also identified biased signaling in the response of the CaSR to different mutations across the two pathways, indicating that some mutations resulted in receptor conformations that differentially altered receptor-coupling preferences. These findings have important implications for understanding the causes of diseases linked to the CaSR. A full appreciation of the molecular effects of these amino acid changes may enable the development of therapeutics that specifically target the molecular determinant of impairment in the receptor.


2002 ◽  
Vol 68 (8) ◽  
pp. 3830-3840 ◽  
Author(s):  
Shinichi Kawamoto ◽  
Jun Shima ◽  
Rumi Sato ◽  
Tomoko Eguchi ◽  
Sadahiro Ohmomo ◽  
...  

ABSTRACT Mundticin KS, a bacteriocin produced by Enterococcus mundtii NFRI 7393 isolated from grass silage in Thailand, is active against closely related lactic acid bacteria and the food-borne pathogen Listeria monocytogenes. In this study, biochemical and genetic characterization of mundticin KS was done. Mundticin KS was purified to homogeneity by ammonium sulfate precipitation, sequential ion-exchange chromatography, and solid-phase extraction. The gene cluster (mun locus) for mundticin KS production was cloned, and DNA sequencing revealed that the mun locus consists of three genes, designated munA, munB, and munC. The munA gene encodes a 58-amino-acid mundticin KS precursor, munB encodes a protein of 674 amino acids involved in translocation and processing of the bacteriocin, and munC encodes a mundticin KS immunity protein of 98 amino acids. Amino acid and nucleotide sequencing revealed the complete, unambiguous primary structure of mundticin KS; mundticin KS comprises a 43-amino-acid peptide with an amino acid sequence similar to that of mundticin ATO6 produced by E. mundtii ATO6. Mundticin KS and mundticin ATO6 are distinguished by the inversion of the last two amino acids at their respective C termini. These two mundticins were expressed in Escherichia coli as recombinant peptides and found to be different in activity against certain Lactobacillus strains, such as Lactobacillus plantarum and Lactobacillus curvatus. Mundticin KS was successfully expressed by transformation with the recombinant plasmid containing the mun locus in heterogeneous hosts such as E. faecium, L. curvatus, and Lactococcus lactis. Based on our results, the mun locus is located on a 50-kb plasmid, pML1, of E. mundtii NFRI 7393.


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Frank M. Dautzenberg ◽  
Dimitri E. Grigoriadis ◽  
Richard L. Hauger ◽  
Victoria B. Risbrough ◽  
Thomas Steckler ◽  
...  

Corticotropin-releasing factor (CRF, nomenclature as agreed by the NC-IUPHAR subcommittee on Corticotropin-releasing Factor Receptors [30]) receptors are activated by the endogenous peptides corticotrophin-releasing hormone, a 41 amino-acid peptide, urocortin 1, 40 amino-acids, urocortin 2, 38 amino-acids and urocortin 3, 38 amino-acids. CRF1 and CRF2 receptors are activated non-selectively by CRH and UCN. CRF2 receptors are selectively activated by UCN2 and UCN3. Binding to CRF receptors can be conducted using radioligands [125I]Tyr0-CRF or [125I]Tyr0-sauvagine with Kd values of 0.1-0.4 nM. CRF1 and CRF2 receptors are non-selectively antagonized by α-helical CRF, D-Phe-CRF-(12-41) and astressin. CRF1 receptors are selectively antagonized by small molecules NBI27914, R121919, antalarmin, CP 154,526, CP 376,395. CRF2 receptors are selectively antagonized by antisauvagine and astressin 2B.


2005 ◽  
Vol 187 (11) ◽  
pp. 3786-3794 ◽  
Author(s):  
Christian Trötschel ◽  
Dietrich Deutenberg ◽  
Brigitte Bathe ◽  
Andreas Burkovski ◽  
Reinhard Krämer

ABSTRACT Corynebacterium glutamicum is known for its effective excretion of amino acids under particular metabolic conditions. Concomitant activities of uptake and excretion systems would create an energy-wasting futile cycle; amino acid export systems are therefore tightly regulated. We have used a DNA microarray approach to identify genes for membrane proteins which are overexpressed under conditions of elevated cytoplasmic concentrations of methionine. One of these genes was brnF, coding for the larger subunit of BrnFE, a previously identified two-component isoleucine export system. By deletion, complementation, and overexpression of the brnFE genes in a C. glutamicum strain, in which the two uptake systems for methionine were inactivated, we identified BrnFE as being responsible for methionine export. In the presence of both substrates in the cytoplasm, BrnFE was found to transport isoleucine and methionine at similar rates. The expression of the brnFE gene cluster depends on an Lrp-type transcription factor and was shown to be strongly induced by increasing cytoplasmic methionine concentration. Methionine was a better inducer than isoleucine, indicating that methionine rather than isoleucine might be the native substrate of BrnFE. When the synthesis of BrnFE was blocked by chloramphenicol, fast methionine export was still observed, but only at greatly increased cytoplasmic levels of this amino acid. This indicates the presence of at least one other methionine export system, presumably with low affinity but high capacity. Under conditions where cytoplasmic methionine does not exceed a concentration of 50 mM, BrnFE is the dominant export system for this amino acid.


2010 ◽  
Vol 432 (2) ◽  
pp. 313-321 ◽  
Author(s):  
Alexander V. Peskin ◽  
Andrew G. Cox ◽  
Péter Nagy ◽  
Philip E. Morgan ◽  
Mark B. Hampton ◽  
...  

Prxs (peroxiredoxins) are a ubiquitous family of cysteine-dependent peroxidases that react rapidly with H2O2 and alkyl hydroperoxides and provide defence against these reactive oxidants. Hydroperoxides are also formed on amino acids and proteins during oxidative stress, and they too are a potential cause of biological damage. We have investigated whether Prxs react with amino acid, peptide and protein hydroperoxides, and whether the reactions are sufficiently rapid for these enzymes to provide antioxidant protection against these oxidants. Isolated Prx2, which is a cytosolic protein, and Prx3, which resides within mitochondria, were reacted with a selection of hydroperoxides generated by γ-radiolysis or singlet oxygen, on free amino acids, peptides and proteins. Reactions were followed by measuring the accumulation of disulfide-linked Prx dimers, via non-reducing SDS/PAGE, or the loss of the corresponding hydroperoxide, using quench-flow and LC (liquid chromatography)/MS. All the hydroperoxides induced rapid oxidation, with little difference in reactivity between Prx2 and Prx3. N-acetyl leucine hydroperoxides reacted with Prx2 with a rate constant of 4×104 M−1·s−1. Hydroperoxides present on leucine, isoleucine or tyrosine reacted at a comparable rate, whereas histidine hydroperoxides were ~10-fold less reactive. Hydroperoxides present on lysozyme and BSA reacted with rate constants of ~100 M−1·s−1. Addition of an uncharged derivative of leucine hydroperoxide to intact erythrocytes caused Prx2 oxidation with no concomitant loss in GSH, as did BSA hydroperoxide when added to concentrated erythrocyte lysate. Prxs are therefore favoured intracellular targets for peptide/protein hydroperoxides and have the potential to detoxify these species in vivo.


Sign in / Sign up

Export Citation Format

Share Document