scholarly journals Modelling Droplet Deformation for Sneezing Events using the Eulerian-Lagrangian Particle Surface Approach

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Filippo Gerbino ◽  
Konstantina Vogiatzaki ◽  
Robert Morgan ◽  
Penelope Atkins ◽  
Giovanni Tretola
Author(s):  
K. Szewc ◽  
A. Tanière ◽  
J. Pozorski ◽  
J.-P. Minier

AbstractSmoothed Particle Hydrodynamics (SPH) is a fully Lagrangian, particle-based technique for fluid-flow computations. The main advantage over Eulerian techniques is no requirement of the grid, therefore this is a natural approach to simulate multi-phase flows. The main purpose of this study is an overview and the critical analysis of the SPH variants to see their influence on the flow computations with many components (the historical way of improving the SPH approach). The comparison is performed using common validation (two- and three-dimensional) tests: the Rayleigh-Taylor instability, a square-droplet deformation and a bubble rising in water. The special attention will be given to compare different surface-tension models.


2022 ◽  
Vol 933 ◽  
Author(s):  
Arash Hajisharifi ◽  
Cristian Marchioli ◽  
Alfredo Soldati

The capture of neutrally buoyant, sub-Kolmogorov particles at the interface of deformable drops in turbulent flow and the subsequent evolution of particle surface distribution are investigated. Direct numerical simulation of turbulence, phase-field modelling of the drop interface dynamics and Lagrangian particle tracking are used. Particle distribution is obtained considering excluded-volume interactions, i.e. by enforcing particle collisions. Particles are initially dispersed in the carrier flow and are driven in time towards the surface of the drops by jet-like turbulent fluid motions. Once captured by the interfacial forces, particles disperse on the surface. Excluded-volume interactions bring particles into long-term trapping regions where the average surface velocity divergence sampled by the particles is zero. These regions correlate well with portions of the interface characterized by higher-than-mean curvature, indicating that modifications of the surface tension induced by the presence of very small particles will be stronger in the highly convex regions of the interface.


Author(s):  
G. McMahon ◽  
T. Malis

As with all techniques which are relatively new and therefore underutilized, diamond knife sectioning in the physical sciences continues to see both developments of the technique and novel applications.Technique Developments Development of specific orientation/embedding procedures for small pieces of awkward shape is exemplified by the work of Bradley et al on large, rather fragile particles of nuclear waste glass. At the same time, the frequent problem of pullout with large particles can be reduced by roughening of the particle surface, and a proven methodology using a commercial coupling agent developed for glasses has been utilized with good results on large zeolite catalysts. The same principle (using acid etches) should work for ceramic fibres or metal wires which may only partially pull out but result in unacceptably thick sections. Researchers from the life sciences continue to develop aspects of embedding media which may be applicable to certain cases in the physical sciences.


Author(s):  
Adriana Verschoor ◽  
Ronald Milligan ◽  
Suman Srivastava ◽  
Joachim Frank

We have studied the eukaryotic ribosome from two vertebrate species (rabbit reticulocyte and chick embryo ribosomes) in several different electron microscopic preparations (Fig. 1a-d), and we have applied image processing methods to two of the types of images. Reticulocyte ribosomes were examined in both negative stain (0.5% uranyl acetate, in a double-carbon preparation) and frozen hydrated preparation as single-particle specimens. In addition, chick embryo ribosomes in tetrameric and crystalline assemblies in frozen hydrated preparation have been examined. 2D averaging, multivariate statistical analysis, and classification methods have been applied to the negatively stained single-particle micrographs and the frozen hydrated tetramer micrographs to obtain statistically well defined projection images of the ribosome (Fig. 2a,c). 3D reconstruction methods, the random conical reconstruction scheme and weighted back projection, were applied to the negative-stain data, and several closely related reconstructions were obtained. The principal 3D reconstruction (Fig. 2b), which has a resolution of 3.7 nm according to the differential phase residual criterion, can be compared to the images of individual ribosomes in a 2D tetramer average (Fig. 2c) at a similar resolution, and a good agreement of the general morphology and of many of the characteristic features is seen.Both data sets show the ribosome in roughly the same ’view’ or orientation, with respect to the adsorptive surface in the electron microscopic preparation, as judged by the agreement in both the projected form and the distribution of characteristic density features. The negative-stain reconstruction reveals details of the ribosome morphology; the 2D frozen-hydrated average provides projection information on the native mass-density distribution within the structure. The 40S subunit appears to have an elongate core of higher density, while the 60S subunit shows a more complex pattern of dense features, comprising a rather globular core, locally extending close to the particle surface.


2002 ◽  
Vol 12 (5-6) ◽  
pp. 721-736 ◽  
Author(s):  
David P. Schmidt ◽  
Meizhong Dai ◽  
Haoshu Wang ◽  
J. Blair Perot

2006 ◽  
Vol 6 (1) ◽  
pp. 1-9
Author(s):  
V. Miska ◽  
J.H.J.M. van der Graaf ◽  
J. de Koning

Nowadays filtration processes are still monitored with conventional analyses like turbidity measurements and, in case of flocculation–filtration, with phosphorus analyses. Turbidity measurements have the disadvantage that breakthrough of small flocs cannot be displayed, because of the blindness regarding changes in the mass distributions. Additional particle volume distributions calculated from particle size distributions (PSDs) would provide a better assessment of filtration performance. Lab-scale experiments have been executed on a flocculation–filtration column fed with effluent from WWTP Beverwijk in The Netherlands. Besides particle counting at various sampling points, the effect of sample dilution on the accuracy of PSD measurements has been reflected. It was found that the dilution has a minor effect on PSD of low turbidity samples such as process filtrate. The correlation between total particle counts, total particle volume (TPV) and total particle surface is not high but is at least better for diluted measurements of particles in the range 2–10 μm. Furthermore, possible relations between floc-bound phosphorus and TPV removal had been investigated. A good correlation coefficient is found for TPV removal versus floc-bound phosphorus removal for the experiments with polyaluminiumchloride and the experiments with single denitrifying and blank filtration.


Sign in / Sign up

Export Citation Format

Share Document