DIRECT INTERFACE TRACKING OF DROPLET DEFORMATION

2002 ◽  
Vol 12 (5-6) ◽  
pp. 721-736 ◽  
Author(s):  
David P. Schmidt ◽  
Meizhong Dai ◽  
Haoshu Wang ◽  
J. Blair Perot
Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 51
Author(s):  
Amir Taheri ◽  
Jan David Ytrehus ◽  
Bjørnar Lund ◽  
Malin Torsæter

We present our new designed concentric Hele-Shaw cell geometry with dynamic similarity to a real field wellbore annulus during primary cementing, and then, the results of displacement flow of Newtonian and yield-stress non-Newtonian fluids in it are described. The displacement stability and efficiency, the effect of back, front, and side boundaries on displacement, bypassing pockets of displaced yield-stress fluid in displacing fluid, and the behavior of pressure gradients in the cell are investigated. Applications of intermediate buoyant particles with different sizes and densities intermediate between those of successively pumped fluids for tracking the interface between the two displaced and displacing fluids are examined. The main idea is to upgrade this concentric Hele-Shaw cell geometry later to an eccentric one and check the possibility of tracking the interface between successive fluids pumped in the cell. Successful results help us track the interface between drilling fluid and spacer/cement during primary cementing in wells penetrating a CO2 storage reservoir and decreasing the risk of CO2 leakage from them.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 272
Author(s):  
Doojin Lee ◽  
Amy Q. Shen

Droplet microfluidics provides a versatile tool for measuring interfacial tensions between two immiscible fluids owing to its abilities of fast response, enhanced throughput, portability and easy manipulations of fluid compositions, comparing to conventional techniques. Purely homogeneous extension in the microfluidic device is desirable to measure the interfacial tension because the flow field enables symmetric droplet deformation along the outflow direction. To do so, we designed a microfluidic device consisting of a droplet production region to first generate emulsion droplets at a flow-focusing area. The droplets are then trapped at a stagnation point in the cross junction area, subsequently being stretched along the outflow direction under the extensional flow. These droplets in the device are either confined or unconfined in the channel walls depending on the channel height, which yields different droplet deformations. To calculate the interfacial tension for confined and unconfined droplet cases, quasi-static 2D Darcy approximation model and quasi-static 3D small deformation model are used. For the confined droplet case under the extensional flow, an effective viscosity of the two immiscible fluids, accounting for the viscosity ratio of continuous and dispersed phases, captures the droplet deformation well. However, the 2D model is limited to the case where the droplet is confined in the channel walls and deforms two-dimensionally. For the unconfined droplet case, the 3D model provides more robust estimates than the 2D model. We demonstrate that both 2D and 3D models provide good interfacial tension measurements under quasi-static extensional flows in comparison with the conventional pendant drop method.


2021 ◽  
Vol 5 (3) ◽  
pp. 32
Author(s):  
Benedikt Mutsch ◽  
Peter Walzel ◽  
Christian J. Kähler

The droplet deformation in dispersing units of high-pressure homogenizers (HPH) is examined experimentally and numerically. Due to the small size of common homogenizer nozzles, the visual analysis of the transient droplet generation is usually not possible. Therefore, a scaled setup was used. The droplet deformation was determined quantitatively by using a shadow imaging technique. It is shown that the influence of transient stresses on the droplets caused by laminar extensional flow upstream the orifice is highly relevant for the droplet breakup behind the nozzle. Classical approaches based on an equilibrium assumption on the other side are not adequate to explain the observed droplet distributions. Based on the experimental results, a relationship from the literature with numerical simulations adopting different models are used to determine the transient droplet deformation during transition through orifices. It is shown that numerical and experimental results are in fairly good agreement at limited settings. It can be concluded that a scaled apparatus is well suited to estimate the transient droplet formation up to the outlet of the orifice.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1764
Author(s):  
Donghai Yang ◽  
Huayao Sun ◽  
Qing Chang ◽  
Yongxiang Sun ◽  
Limin He

Nano-fluid flooding is a new method capable of improving oil recovery; however, nanoparticles (NPs) significantly affect electric dehydration, which has rarely been investigated. The effect of silica (SiO2) NPs on the droplet–interface coalescence was investigated using a high-speed digital camera under an electric field. The droplet experienced a fall, coalescence, and secondary droplet formation. The results revealed that the oil–water interfacial tension and water conductivity changed because of the SiO2 NPs. The decrease of interfacial tension facilitated droplet deformation during the falling process. However, with the increase of particle concentration, the formed particle film inhibited the droplet deformation degree. Droplet and interface are connected by a liquid bridge during coalescence, and the NP concentration also resulted in the shape of this liquid bridge changing. The increase of NP concentration inhibited the horizontal contraction of the liquid bridge while promoting vertical collapse. As a result, it did not facilitate secondary droplet formation. Moreover, the droplet falling velocity decreased, while the rising velocity of the secondary droplet increased. Additionally, the inverse calculation of the force balance equation showed that the charge of the secondary droplet also increased. This is attributed to nanoparticle accumulation, which resulted in charge accumulation on the top of the droplet.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1305
Author(s):  
Ahmad Fakhari ◽  
Željko Tukovic ◽  
Olga Sousa Carneiro ◽  
Célio Fernandes

The extrudate swell, i.e., the geometrical modifications that take place when the flowing material leaves the confined flow inside a channel and moves freely without the restrictions that are promoted by the walls, is a relevant phenomenon in several polymer processing techniques. For instance, in profile extrusion, the extrudate cross-section is subjected to a number of distortions that are motivated by the swell, which are very difficult to anticipate, especially for complex geometries. As happens in many industrial processes, numerical modelling might provide useful information to support design tasks, i.e., to allow for identifying the best strategy to compensate the changes promoted by the extrudate swell. This study reports the development of an improved interface tracking algorithm that employs the least-squares volume-to-point interpolation method for the grid movement. The formulation is enriched further with the consistent second-order time-accurate non-iterative Pressure-Implicit with Splitting of Operators (PISO) algorithm, which allows for efficiently simulating free-surface flows. The accuracy and robustness of the proposed solver is illustrated through the simulation of the steady planar and asymmetric extrudate swell flows of Newtonian fluids. The role of inertia on the extrudate swell is studied, and the results that are obtained with the newly improved solver show good agreement with reference data that are found in the scientific literature.


2021 ◽  
Vol 127 (2) ◽  
Author(s):  
Tiago de Faria Pinto ◽  
Jan Mathijssen ◽  
Randy Meijer ◽  
Hao Zhang ◽  
Alex Bayerle ◽  
...  

AbstractIn this work, the expansion dynamics of liquid tin micro-droplets irradiated by femtosecond laser pulses were investigated. The effects of laser pulse duration, energy, and polarization on ablation, cavitation, and spallation dynamics were studied using laser pulse durations ranging from 220 fs to 10 ps, with energies ranging from 1 to 5 mJ, for micro-droplets with an initial radius of 15 and 23 $$\upmu$$ μ m. Using linearly polarized laser pulses, cylindrically asymmetric shock waves were produced, leading to novel non-symmetric target shapes, the asymmetry of which was studied as a function of laser pulse parameters and droplet size. A good qualitative agreement was obtained between smoothed-particle hydrodynamics simulations and high-resolution stroboscopic experimental data of the droplet deformation dynamics.


Sign in / Sign up

Export Citation Format

Share Document