scholarly journals Towards Trusted Identities for Swiss Researchers and their Data

2020 ◽  
Vol 14 (1) ◽  
pp. 303-314
Author(s):  
Julien A. Raemy ◽  
René Martin Schneider

In this paper we report on efforts to enhance the Swiss persistent identifier (PID) ecosystem. We will firstly describe the current situation and the need for improvement in order to describe in full detail the steps undertaken to create a Swiss-wide model. A case study was undertaken by using several data sets from the domains of art and design in the context of the ICOPAD project. We will provide a set of recommendations to enable a PID service that could mint Archival Resource Key (ARK) identifiers or a flavour of Research Resource Identifiers (RRIDs) as complement to Digital Object Identifiers (DOIs). We will conclude with some remarks concerning the transferability of this approach to other areas and the requirements for a national hub for PID management in Switzerland.

Author(s):  
Harrison Togia ◽  
Oceana P. Francis ◽  
Karl Kim ◽  
Guohui Zhang

Hazards to roadways and travelers can be drastically different because hazards are largely dependent on the regional environment and climate. This paper describes the development of a qualitative method for assessing infrastructure importance and hazard exposure for rural highway segments in Hawai‘i under different conditions. Multiple indicators of roadway importance are considered, including traffic volume, population served, accessibility, connectivity, reliability, land use, and roadway connection to critical infrastructures, such as hospitals and police stations. The method of evaluating roadway hazards and importance can be tailored to fit different regional hazard scenarios. It assimilates data from diverse sources to estimate risks of disruption. A case study for Highway HI83 in Hawai‘i, which is exposed to multiple hazards, is conducted. Weakening of the road by coastal erosion, inundation from sea level rise, and rockfall hazards require adaptation solutions. By analyzing the risk of disruption to highway segments, adaptation approaches can be prioritized. Using readily available geographic information system data sets for the exposure and impacts of potential hazards, this method could be adapted not only for emergency management but also for planning, design, and engineering of resilient highways.


Forecasting ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 322-338
Author(s):  
Marvin Carl May ◽  
Alexander Albers ◽  
Marc David Fischer ◽  
Florian Mayerhofer ◽  
Louis Schäfer ◽  
...  

Currently, manufacturing is characterized by increasing complexity both on the technical and organizational levels. Thus, more complex and intelligent production control methods are developed in order to remain competitive and achieve operational excellence. Operations management described early on the influence among target metrics, such as queuing times, queue length, and production speed. However, accurate predictions of queue lengths have long been overlooked as a means to better understanding manufacturing systems. In order to provide queue length forecasts, this paper introduced a methodology to identify queue lengths in retrospect based on transitional data, as well as a comparison of easy-to-deploy machine learning-based queue forecasting models. Forecasting, based on static data sets, as well as time series models can be shown to be successfully applied in an exemplary semiconductor case study. The main findings concluded that accurate queue length prediction, even with minimal available data, is feasible by applying a variety of techniques, which can enable further research and predictions.


2016 ◽  
Vol 41 (4) ◽  
pp. 357-388 ◽  
Author(s):  
Elizabeth A. Stuart ◽  
Anna Rhodes

Background: Given increasing concerns about the relevance of research to policy and practice, there is growing interest in assessing and enhancing the external validity of randomized trials: determining how useful a given randomized trial is for informing a policy question for a specific target population. Objectives: This article highlights recent advances in assessing and enhancing external validity, with a focus on the data needed to make ex post statistical adjustments to enhance the applicability of experimental findings to populations potentially different from their study sample. Research design: We use a case study to illustrate how to generalize treatment effect estimates from a randomized trial sample to a target population, in particular comparing the sample of children in a randomized trial of a supplemental program for Head Start centers (the Research-Based, Developmentally Informed study) to the national population of children eligible for Head Start, as represented in the Head Start Impact Study. Results: For this case study, common data elements between the trial sample and population were limited, making reliable generalization from the trial sample to the population challenging. Conclusions: To answer important questions about external validity, more publicly available data are needed. In addition, future studies should make an effort to collect measures similar to those in other data sets. Measure comparability between population data sets and randomized trials that use samples of convenience will greatly enhance the range of research and policy relevant questions that can be answered.


2017 ◽  
Vol 78 (5) ◽  
pp. 717-736 ◽  
Author(s):  
Samuel Green ◽  
Yanyun Yang

Bifactor models are commonly used to assess whether psychological and educational constructs underlie a set of measures. We consider empirical underidentification problems that are encountered when fitting particular types of bifactor models to certain types of data sets. The objective of the article was fourfold: (a) to allow readers to gain a better general understanding of issues surrounding empirical identification, (b) to offer insights into empirical underidentification with bifactor models, (c) to inform methodologists who explore bifactor models about empirical underidentification with these models, and (d) to propose strategies for structural equation model users to deal with underidentification problems that can emerge when applying bifactor models.


2001 ◽  
Vol 105 (1051) ◽  
pp. 501-516 ◽  
Author(s):  
A. P. Brown

Abstract For the purpose of the design and certification of inflight icing protection systems for transport and general aviation aircraft, the eventual re-definition/expansion of the icing environment of FAR 25/JAR 25, Appendix C is under consideration. Such a re-definition will be aided by gathering as much inflight icing event data as reasonably possible, from widely-different geographic locations. The results of a 12-month pilot programme of icing event data gathering are presented. Using non-instrumented turboprop aircraft flying upon mid-altitude routine air transport operations, the programme has gathered observational data from across the British Isles and central France. By observing a number of metrics, notably windscreen lower-corner ice impingement limits, against an opposing corner vortex-flow, supported by wing leading edge impingement limits, the observed icing events have been classified as ‘small’, ‘medium’ or ‘large’ droplet. Using the guidance of droplet trajectory modelling, MVD values for the three droplet size bins have been conjectured to be 15, 40 and 80mm. Hence, the ‘large’ droplet category would be in exceedance of FAR/JAR 25, Appendix C. Data sets of 117 winter-season and 55 summer-season icing events have been statistically analysed. As defined above, the data sets include 11 winter and five summer large droplet icing encounters. Icing events included ‘sandpaper’ icing from short-duration ‘large’ droplets, and a singular ridge formation icing event in ‘large’ droplet. The frequency of ‘large’ droplet icing events amounted to 1 in 20 flight hours in winter and 1 in 35 flight hours in summer. These figures reflect ‘large’ droplet icing encounter probabilities perhaps substantially greater than previously considered. The ‘large’ droplet events were quite localised, mean scale-size being about 6nm.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jillian Carmody ◽  
Samir Shringarpure ◽  
Gerhard Van de Venter

Purpose The purpose of this paper is to demonstrate privacy concerns arising from the rapidly increasing advancements and use of artificial intelligence (AI) technology and the challenges of existing privacy regimes to ensure the on-going protection of an individual’s sensitive private information. The authors illustrate this through a case study of energy smart meters and suggest a novel combination of four solutions to strengthen privacy protection. Design/methodology/approach The authors illustrate how, through smart meter obtained energy data, home energy providers can use AI to reveal private consumer information such as households’ electrical appliances, their time and frequency of usage, including number and model of appliance. The authors show how this data can further be combined with other data to infer sensitive personal information such as lifestyle and household income due to advances in AI technologies. Findings The authors highlight data protection and privacy concerns which are not immediately obvious to consumers due to the capabilities of advanced AI technology and its ability to extract sensitive personal information when applied to large overlapping granular data sets. Social implications The authors question the adequacy of existing privacy legislation to protect sensitive inferred consumer data from AI-driven technology. To address this, the authors suggest alternative solutions. Originality/value The original value of this paper is that it illustrates new privacy issues brought about by advances in AI, failings in current privacy legislation and implementation and opens the dialog between stakeholders to protect vulnerable consumers.


2000 ◽  
Vol 70 (3) ◽  
pp. 370-405 ◽  
Author(s):  
Zachary Dean Sconiers ◽  
Jerry Lee Rosiek

In this article, middle school science teacher Zachary Sconiers and university researcher Jerry Rosiek introduce the sonata-form case study, a narrative structure designed to document teachers' understandings of how subject matter and sociocultural influences intersect in the classroom. Written in collaboration with the Fresno Science Education Equity Teacher Research Project, this case study is told from the perspective of Jerome Jameson, a fictional chemistry teacher, whose story is based on Sconiers's actual teaching experiences. Also integrated into the narrative are Sconiers's in-depth reflections on the connections between his commitment to science education and his commitment to promoting educational equity. The sonata-form case study is followed by an afterword, written by Rosiek and Sconiers, that describes this unique methodology for teacher inquiry in full detail. The writing process for the case study was extensive and iterative: the two authors worked closely over the course of a year to develop the narrative, with Rosiek taking the lead on revising and editing. With this case study, Sconiers and Rosiek highlight the critical need for a new form of educational research, one that "builds bridges between the discourses of educational excellence and educational equity, as well as between theory and practice."


2012 ◽  
Vol 60 (2) ◽  
pp. 219-232 ◽  
Author(s):  
Natália de Moraes Rudorff ◽  
Carla Van Der Haagen Custodio Bonetti ◽  
Jarbas Bonetti Filho

This study aimed to assess benthic impacts of suspended shellfish cultures in two marine farms located in South Bay, Florianópolis (SC, Brazil). The goal was to detect changes in the benthic layer and evaluate the influence of local conditions, such as hydrodynamics and geomorphology, on the degree of impact at each site. The method included analysis of three groups of oceanographic descriptors: hydrodynamic; morpho-sedimentological (bathymetry, grain size and organic content), and ecological (foraminiferal fauna). Data sets were analyzed using geostatistical and multivariate techniques. Ecological descriptors seemed to be more effective under different environmental conditions than sedimentological variables. Those that best identified culture-related biodeposits, were: dominance of Ammonia tepida; test size; and living: total population ratio. Only slight differences were observed within and outside the culture structures. However, a greater alteration was observed at the site with weaker hydrodynamics and located in shallower depths. The conclusion is that biodeposition at studied still causes little alteration in the local benthic environment. However, local factors such as hydrodynamics and geomorphology were shown to be important in minimizing these impacts. These are criteria that should be considered in site selection programs for the development of this productive activity.


Sign in / Sign up

Export Citation Format

Share Document