scholarly journals CROSS-MOMENTS COMPUTATION FOR STOCHASTIC CONTEXT-FREE GRAMMARS

2018 ◽  
Vol 33 (1) ◽  
pp. 041
Author(s):  
Velimir M. Ilić ◽  
Miroslav D. Ćirić ◽  
Miomir S. Stanković

In this paper we consider the problem of efficient computation of cross-moments of a vector random variable represented by a stochastic context-free grammar. Two types of cross-moments are discussed. The sample space for the first one is the set of all derivations of the context-free grammar, and the sample space for the second one is the set of all derivations which generate a string belonging to the language of the grammar. In the past, this problem was widely studied, but mainly for the cross-moments of scalar variables and up to the second order. This paper presents new algorithms for computing the cross-moments of an arbitrary order, while the previously developed ones are derived as special cases.

Author(s):  
Velimir M Ilić ◽  
Miroslav D Ćirić ◽  
Miomir S Stanković

In this paper we consider the problem of efficient computation of cross-moments of a vector random variable represented by a stochastic context-free grammar. Two types of cross-moments are discussed. The sample space for the first one is the set of all derivations of the context-free grammar, and the sample space for the second one is the set of all derivations which generate a string belonging to the language of the grammar. In the past, this problem was widely studied, but mainly for the cross-moments of scalar variables and up to the second order. This paper presents new algorithms for computing the cross-moments of an arbitrary order, while the previously developed ones are derived as special cases.


2020 ◽  
Vol 39 (6) ◽  
pp. 8463-8475
Author(s):  
Palanivel Srinivasan ◽  
Manivannan Doraipandian

Rare event detections are performed using spatial domain and frequency domain-based procedures. Omnipresent surveillance camera footages are increasing exponentially due course the time. Monitoring all the events manually is an insignificant and more time-consuming process. Therefore, an automated rare event detection contrivance is required to make this process manageable. In this work, a Context-Free Grammar (CFG) is developed for detecting rare events from a video stream and Artificial Neural Network (ANN) is used to train CFG. A set of dedicated algorithms are used to perform frame split process, edge detection, background subtraction and convert the processed data into CFG. The developed CFG is converted into nodes and edges to form a graph. The graph is given to the input layer of an ANN to classify normal and rare event classes. Graph derived from CFG using input video stream is used to train ANN Further the performance of developed Artificial Neural Network Based Context-Free Grammar – Rare Event Detection (ACFG-RED) is compared with other existing techniques and performance metrics such as accuracy, precision, sensitivity, recall, average processing time and average processing power are used for performance estimation and analyzed. Better performance metrics values have been observed for the ANN-CFG model compared with other techniques. The developed model will provide a better solution in detecting rare events using video streams.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Witold Dyrka ◽  
Marlena Gąsior-Głogowska ◽  
Monika Szefczyk ◽  
Natalia Szulc

Abstract Background Amyloid signaling motifs are a class of protein motifs which share basic structural and functional features despite the lack of clear sequence homology. They are hard to detect in large sequence databases either with the alignment-based profile methods (due to short length and diversity) or with generic amyloid- and prion-finding tools (due to insufficient discriminative power). We propose to address the challenge with a machine learning grammatical model capable of generalizing over diverse collections of unaligned yet related motifs. Results First, we introduce and test improvements to our probabilistic context-free grammar framework for protein sequences that allow for inferring more sophisticated models achieving high sensitivity at low false positive rates. Then, we infer universal grammars for a collection of recently identified bacterial amyloid signaling motifs and demonstrate that the method is capable of generalizing by successfully searching for related motifs in fungi. The results are compared to available alternative methods. Finally, we conduct spectroscopy and staining analyses of selected peptides to verify their structural and functional relationship. Conclusions While the profile HMMs remain the method of choice for modeling homologous sets of sequences, PCFGs seem more suitable for building meta-family descriptors and extrapolating beyond the seed sample.


Cybernetics ◽  
1974 ◽  
Vol 8 (3) ◽  
pp. 349-351
Author(s):  
A. A. Letichevskii

2013 ◽  
Vol 39 (1) ◽  
pp. 57-85 ◽  
Author(s):  
Alexander Fraser ◽  
Helmut Schmid ◽  
Richárd Farkas ◽  
Renjing Wang ◽  
Hinrich Schütze

We study constituent parsing of German, a morphologically rich and less-configurational language. We use a probabilistic context-free grammar treebank grammar that has been adapted to the morphologically rich properties of German by markovization and special features added to its productions. We evaluate the impact of adding lexical knowledge. Then we examine both monolingual and bilingual approaches to parse reranking. Our reranking parser is the new state of the art in constituency parsing of the TIGER Treebank. We perform an analysis, concluding with lessons learned, which apply to parsing other morphologically rich and less-configurational languages.


Games ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 6
Author(s):  
Jochen Staudacher ◽  
Felix Wagner ◽  
Jan Filipp

We study the efficient computation of power indices for weighted voting games with precoalitions amongst subsets of players (reflecting, e.g., ideological proximity) using the paradigm of dynamic programming. Starting from the state-of-the-art algorithms for computing the Banzhaf and Shapley–Shubik indices for weighted voting games, we present a framework for fast algorithms for the three most common power indices with precoalitions, i.e., the Owen index, the Banzhaf–Owen index and the symmetric coalitional Banzhaf index, and point out why our new algorithms are applicable for large numbers of players. We discuss implementations of our algorithms for the three power indices with precoalitions in C++ and review computing times, as well as storage requirements.


2012 ◽  
Vol 44 (3) ◽  
pp. 842-873 ◽  
Author(s):  
Zhiyi Chi

Nonnegative infinitely divisible (i.d.) random variables form an important class of random variables. However, when this type of random variable is specified via Lévy densities that have infinite integrals on (0, ∞), except for some special cases, exact sampling is unknown. We present a method that can sample a rather wide range of such i.d. random variables. A basic result is that, for any nonnegative i.d. random variable X with its Lévy density explicitly specified, if its distribution conditional on X ≤ r can be sampled exactly, where r > 0 is any fixed number, then X can be sampled exactly using rejection sampling, without knowing the explicit expression of the density of X. We show that variations of the result can be used to sample various nonnegative i.d. random variables.


Sign in / Sign up

Export Citation Format

Share Document