scholarly journals EXPERIMENTAL INVESTIGATION OF AIR-SOURCE HEAT PUMP IN DIFFERENT REAL OPERATIONAL CONDITIONS FOR HEATING DISTINCTIVE REGIMES

Author(s):  
Goran Vuckovic ◽  
Mića Vukić ◽  
Mirko Stojiljković ◽  
Marko Ignjatović

In a time of permanent care for environmental protection, energy consumption and conservation of resources, heat pumps are becoming increasingly important as a technology for reducing greenhouse gas emissions while preservation thermal comfort in build environment. This paper presents the experimental results of air-source heat pump in different real operating conditions, as follows: for space heating by low-temperature underfloor heating when the supply water temperature was set at 38°C, or for domestic hot water heating in the storage tank volume of 180 liters at a temperature of 46°C. In the low-temperature underfloor heating mode, the efficiency of the air-source heat pump could be increased if the maximum temperature at the end of the compression process and the condensing temperature were reduced in the initial phase of the heat pump operation. In the domestic hot water heating mode, the efficiency of the air-source heat pump could be increased if the maximum condensation temperature in the final phase of the heat pump operation was limited.

2008 ◽  
Vol 40 (9) ◽  
pp. 1731-1736 ◽  
Author(s):  
Ping Cui ◽  
Hongxing Yang ◽  
Jeffrey D. Spitler ◽  
Zhaohong Fang

2021 ◽  
Vol 13 (0) ◽  
pp. 1-6
Author(s):  
Gabrielė Daugirdaitė ◽  
Giedrė Streckienė ◽  
Tomas Kropas

In order to achieve ambitious goals for energy efficiency and requirements for near zero energy buildings, various technological solutions enabling the use of renewable energy are proposed and applied. One such rapidly spreading technology is heat pumps. However, the use of air-­to-­water heat pumps in countries where the cold season is cold and humid has unfavourable conditions for the operation of this equipment during the heating season. As a result, the performance efficiency of the equipment decreases. This article presents the simulation results of an air-­to-­water heat pump operation in Lithuania using the TRNSYS modelling tool; its nominal heating capacity is 6.55 kW. The model was calibrated using real data obtained at Vilnius Gediminas Technical University when measurements were performed under heat pump freezing conditions. The seasonal performance factor of the heat pump heating mode was determined during the calculation. Parametric analysis of the model was also performed, when sensitivity of the model to the initial climatic data was observed. Comparable results are obtained for Vilnius, Prague and London.


2015 ◽  
Vol 797 ◽  
pp. 185-191
Author(s):  
Arkadiusz Gużda ◽  
Norbert Szmolke

The article compares two means for domestic hot water production (DHW) for a detached house that is using gas boiler with a closed combustion chamber and air source heat pump water heater (ASHPWH). An analysis of domestic hot water production using an air source heat pump was made taking into account coefficient of performance listed according to the new BS EN 16147 standard. The analysis of outlay related to the investment and operating costs was also performed. Ultimately, the more profitable choice for domestic hot water production was made.


2014 ◽  
Vol 953-954 ◽  
pp. 136-143
Author(s):  
Jin Shun Wu ◽  
Yue Bo Hu ◽  
De Zhi Hu ◽  
Hong Wei Liu

In winter,Many families use air source heat pump because of the low evaporation temperature of the system, resulting in lower heating efficiency of system. To solve this problem, the low temperature solar assisted hot water was added to the project which is on the basis of air source heat pump, and the system has been tested. After analysis of the collection efficiency of solar collectors at low temperatures and comparative analysis of the temperature cycle, pressure, energy consumption of the low-temperature solar-assisted systems and air source heat pump system, the optimal collector temperature and law of heat pump refrigerant cycle changes of the system were obtained. Theoretically, comparative analysis of low temperature air source heat pumps and solar hot water secondary air source heat pump compression ratio and COP. It gives the key parameters affecting the compression ratio and COP, pointing out ways to improve the heat pump COP. Finally, a key measure to improve the thermal performance of the unit system is proposed, to provide a reference for future practical applications and research. Foreword Air source heat pump in ambient air contains rich low grade solar potential as a source of heat, it has inexhaustible characteristics [1] . The main reason for restricting the use of air source heat pump in northern area of our country is when the outdoor air temperature is low in winter, the outdoor coil frost severe heating efficiency air source heat pump is greatly reduced. Martinez suggested experimental study on the application of solar radiant floor heating systems , solar water temperature is 50-60°C, low efficiency, especially when overcast snow lower system efficiency [2] .In view of the outdoor coil frosting problem, direct expansion solar assisted heat pump water heater system using the proposed by Li Yuwu, from a certain extent alleviated the problem of heat in winter for coil winter fros, improving the heating coefficient and improved the operating characteristics of the unit. However, this system requires the direct absorption of heat in air tube, and the specific heat of air is small, difficult to heat storage, illumination by solar radiation impact, unstable system operation [3]. Based on the above issues, for the low-level office building , the new rural residential , this study presents low temperature solar auxiliary air source heat pump system , the device uses low-temperature solar hot water heat pump system as low , both full use of solar energy , but also eliminates the original system frost problems and improve the efficiency of solar collectors and heat set to improve the evaporation temperature of the evaporator , thereby increasing the compression ratio of the heat pump unit .


2019 ◽  
Vol 111 ◽  
pp. 06075
Author(s):  
Calin Sebarchievici

A ground-coupled heat pump system (GCHP) and an air source heat pump (ASHP) driven by photovoltaic panels are used to provide domestic hot preparation for a NZEB house. The experimental measurements are used to test both the heat pump models in the same conditions of water temperature and volume of domestic hot water. A comparative analysis of the two heat pumps for domestic hot water preparation is performed. In addition, using the software TRNSYS (Transient Systems Simulation), two numerical simulation models of thermal and electrical energy consumption in DHW mode are developed. Finally, the simulations obtained using TRNSYS software are analysed and compared to the experimental data.


2012 ◽  
Vol 34 (4) ◽  
pp. 433-448 ◽  
Author(s):  
Shen Chao ◽  
Jiang Yiqiang ◽  
Yao Yang ◽  
Deng Shiming ◽  
Wang Xinlei

Sign in / Sign up

Export Citation Format

Share Document